
1st International Workshop
about Sets and Tools

(SETS 2014)

Affiliated to ABZ 2014

Toulouse (France)

Preface

This volume contains the papers presented at SETS 2014: 1st International
Workshop about Sets and Tools held on June 1, 2014 in Toulouse (France).

There were 6 submissions. Each submission was reviewed by at least 3, and on
the average 3, program committee members. The committee decided to accept
6 papers. The program also includes 2 invited talks.

In the preparation of these proceedings and in managing the whole discussion
process, Andrei Voronkov’s EasyChair conference management system proved
itself an excellent tool.

May 26, 2014
Paris, France

David Delahaye
Catherine Dubois

i

Table of Contents

Proof Verification within Set Theory: Exploiting a New Way of
Modeling Graphs . 1

Eugenio Omodeo

Mathematical Theorem Proving, from Muscadet0 to Muscadet4, Why
and How . 3

Dominique Pastre

Rapid Prototyping and Animation of Z Specifications Using log 4
Maximiliano Cristia and Gianfranco Rossi

Introduction to the Integration of SMT-Solvers in Rodin 19
David Deharbe, Pascal Fontaine, Yoann Guyot and Laurent Voisin

Using Deduction Modulo in Set Theory . 34
Pierre Halmagrand

Turning Failure into Proof: Evaluating the ProB Disprover 46
Sebastian Krings, Michael Leuschel and Jens Bendisposto

Return of Experience on Automating Refinement in B 57
Thierry Lecomte

Programming with Partially Specified Collections . 69
Gianfranco Rossi

ii

Program Committee

Maximiliano Cristia CIFASIS-UNR
David Deharbe Universidade Federal do Rio Grande do Norte
David Delahaye Cedric/Cnam/Inria, Paris
Catherine Dubois ENSIIE-CEDRIC
Mamoun Filali-Amine IRIT
Michael Leuschel University of Düsseldorf
Stephan Merz INRIA Lorraine
Dominique Pastre LIPADE - Universite Paris Descartes
Gianfranco Rossi Universita’ di Parma
Mark Utting The University of Waikato
Benjamin Werner INRIA
Freek Wiedijk Radboud University Nijmegen
Wolfgang Windsteiger RISC Institute, JKU Linz, Austria

iii

Additional Reviewers

A

Arthan, Rob

K

Krings, Sebastian

iv

Proof verification within Set Theory:
Exploiting a new way of modeling graphs

Eugenio G. Omodeo

University of Trieste (Italy), DMG/DMI

This talk illustrates proof-verification technology based on set theory, also
reporting on experiments carried out with ÆtnaNova, aka Ref (see [6, 4]).

The said verifier processes script files consisting of definitions, theorem state-
ments and proofs of the theorems. Its underlying deductive system—mainly first-
order, but with an important second-order construct enabling one to package def-
initions and theorems into reusable proofware components—is a variant of the
Zermelo-Fraenkel set theory, ZFC, with axioms of regularity and global choice.
This is apparent from the very syntax of the language, borrowing from the set-
theoretic tradition many constructs, e.g. abstraction terms. Much of Ref’s nat-
uralness, comprehensiveness, and readability, stems from this foundation; much
of its effectiveness, from the fifteen or so built-in mechanisms, tailored on ZFC,
which constitute its inferential armory. Rather peculiar aspects of Ref, in com-
parison to other alike proof-assistants (cf., e.g., [2, 1]), are that Ref relies only
marginally on predicate calculus and that types play no prominent role, in it, as
a foundation.

The selection of examples, mainly referred to graphs, to be discusses in
this talk, reflects today’s tendency [5] to bring Ref’s use closer to algorithm-
correctness verification. To achieve relatively short, formally checked, proofs of
properties enjoyed by claw-free graphs, we took advantage of novel results [3]
about representing their (undirected) edges via membership.

Acknowledgements. Partial funding was granted by the INdAM/GNCS 2013
project “ Specifica e verifica di algoritmi tramite strumenti basati sulla teoria
degli insiemi”.

References

1. C. E. Brown. Combining type theory and untyped set theory. In Ulrich Furbach
and Natarajan Shankar, editors, IJCAR, volume 4130 of Lecture Notes in Computer
Science, pages 205–219. Springer, 2006.

2. R. Matuszewski and P. Rudnicki. Mizar: the first 30 years. Mechanized Mathematics
and its Applications, 4(1):3–24, 2005.

3. M. Milanič and A. I. Tomescu. Set graphs. I. Hereditarily finite sets and extensional
acyclic orientations. Discrete Applied Mathematics, 161(4-5):677–690, 2013.

4. E. G. Omodeo. The Ref proof-checker and its “common shared scenario”. In Martin
Davis and Ed Schonberg, editors, From Linear Operators to Computational Biology:
Essays in Memory of Jacob T. Schwartz, pages 121–167. Springer, 2012. With an
appendix, Claw-free graphs as sets, co-authored by A. I. Tomescu.

1

5. E. G. Omodeo and A. I. Tomescu. Set graphs. III. Proof Pearl: Claw-free graphs
mirrored into transitive hereditarily finite sets. Journal of Automated Reasoning,
52(1):1–29, 2014.

6. J.T. Schwartz, D. Cantone, and E.G. Omodeo. Computational Logic and Set Theory
- Applying Formalized Logic to Analysis. Springer, 2011.

2

Mathematical theorem proving,
from Muscadet0 to Muscadet4,

why and how ?

Dominique Pastre

Universite Paris Descartes, Paris, France
pastre@math-info.univ-paris5.fr

We will present the ideas and the choices which have been made throughout
the development of the Muscadet theorem prover. We will first see the prin-
ciples and main ideas which lead to a first prover in the context of the time,
influenced by a famous paper by Woody Bledsoe. This program used natural
methods and was applied to set theory. It was then rewritten as a knowledge
based-system where an inference engine applied rules, given or automatically
built by metarules which expressed general or specific mathematical knowledge.
It has been applied to some difficult problems. In order to allow more flexibility
for expressing knowledge, it has been rewritten in Prolog, allowing the knowledge
to be more or less declarative or procedural. To work with the TPTP Library
the system had to work without knowing anything about mathematics except
predicate calculus. All mathematical concepts had to be defined with mathemat-
ical statements, and the belonging relation handled as any other binary relation.
To avoid translating knowledge to TPTP syntax, TPTP syntax has been used
(this unfortunately forbade the use of some abbreviations mathematicians are
comfortable with). Last but not least, the relevant trace has been extracted to
give a proof easily read by anyone, except in the case of failure, when all steps
may be displayed to understand (manually) the reasons for the failure. Muscadet
has participated to CASC competitions. The results show its complementarity
with regard to resolution-based provers.

3

Rapid Prototyping and Animation of Z
Specifications Using {log}

Maximiliano Cristiá1 and Gianfranco Rossi2

1 CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

2 Università degli Studi di Parma, Parma, Italy
gianfranco.rossi@unipr.it

Abstract. Prolog has been proposed as the programming language on
which animation and prototyping of Z specifications should be based.
However, we believe there is still room for improvements. In this paper,
we want to revisit this issue in the light of a powerful, set-oriented con-
straint programming language like {log} (pronounced ’setlog’). In partic-
ular, we pay attention to three points that we think are crucial: finding
solutions to complex state predicates; defining formal criteria for guid-
ing an evaluation process based on prototypes; and automatically adding
graphical user interfaces to prototypes generated from Z specifications.
Three examples of information systems prototypes are available online.

1 Running Example

Assume you are eliciting the user requirements for an ERP system. In a first
meeting, your customer asks the following:

(R1) Keep a record of client accounts where the company registers all the credits
and debits of its clients.

(R2) Get a listing of all the accounts whose balance is in a given range.

Given that you have experience in requirement engineering, you know that
probably your customer has told you (R1) and (R2) without giving them too
much thought. You would like to be sure that these are the real, final require-
ments before engaging your team in programming unstable, unvalidated require-
ments. Following the software engineering literature you know that it would be
of great help if you could show your customer a prototype of these requirements.

Now, suppose you know of a tool that automatically generates functional
prototypes of some kind of Z specifications, provided they are annotated with
user interface directives. Further, let us say that in your team there is an engineer
who is knowledgeable in the Z notation. Would it be cost-effective to write a Z
specification of (R1) and (R2) and use that tool to generate a prototype so your
customer can validate them? In this way, your programmers will implement
validated requirements; moreover, they will do it from a formal specification. All
this would amount to a much better product with less iterations to improve its

4

quality. Even more, assume that this prototyping tool records all the interactions
of users. Then, later, these interactions can be used as functional test cases. So
the tool would also help you during the testing process.

After considering all these gains, you decide to ask your team to write the
Z specification shown in Figure 1 and the GUI specification shown in 3 which,
when fed into the prototyping tool, become the Prolog+{log}+XPCE program
[25, 11, 36] partially shown in Figure 4. When this program is executed the user
can play with an application presenting an acceptable GUI like the one shown
in Figure 2—download this and two more examples from [6].

[UID ,NAME]
ERP ==

[clients : UID 7→ NAME ; accounts : UID 7→ Z | dom clients = dom accounts]
InitERP == [ERP | clients = ∅ ∧ accounts = ∅]

NewClientOk
∆ERP ; u? : UID ; n? : NAME

u? /∈ dom clients
clients ′ = clients ∪ {u? 7→ n?}
accounts ′ = accounts ∪ {u? 7→ 0}

TransactionOk
∆ERP ; n? : UID ; m? : Z

n? ∈ dom accounts ∧ m? 6= 0
accounts ′ = accounts ⊕ {n? 7→ accounts n? + m?}
clients ′ = clients

ClientAlreadyExists == [ΞERP ; u? : UID | u? ∈ dom clients]
NewClient == NewClientOk ∨ ClientAlreadyExists
AccountNotExists == [ΞERP ; n? : UID | n? /∈ dom accounts]
NullAmount == [ΞERP ; m? : Z | m? = 0]
Transaction == TransactionOk ∨ AccountNotExists ∨ NullAmount
AccountsInRangeOk ==

[ΞERP ; a?, b? : Z; r ! : PUID | a? ≤ b? ∧ r ! = dom(accounts B (a? . . b?))]
NotARange == [ΞERP ; a?, b? : Z; r ! : RET | a? > b?]
AccountsInRange == AccountsInRangeOk ∨ NotARange

Fig. 1: Excerpt of the Z specification of (R1) and (R2)

Z and {log} will be introduced in sections 2 and 3, respectively, and how
prototypes would be automatically generated in Sect. 4. Now we want to show

5

Fig. 2: Screenshot of the prototype

what users and software engineers can do with these prototypes. Note that the
GUI is divided into two panels. The one on the left, State transitions, dis-
plays all the state transitions executed while the application is used. It displays
the initial state by giving the value for each state variable, the name of the Z
operation (transition) executed and the resulting new state—input and output
variables are not displayed to keep the example manageable but they can be
trivially added. The panel on the right, named ERP in this case, is the actual
prototype which presents a menu bar. This menu bar contains as many pull-down
menus as indicated in the GUI specification plus the Tools menu automatically
added to all prototypes. Although not shown in Figure 2, the Accounts menu
contains three options (New client, Inform transaction and Accounts
in range) as indicated by the GUI specification given in Figure 3. The Tools
menu contains only one option called Set state. When users click on a given
menu option a dialog box opens, as, for instance, the one shown in the figure
which corresponds to the New client option. Again, dialog boxes display GUI
widgets according to the GUI specification, plus default Cancel and Enter but-
tons. Once a dialog box is filled in and the Enter button is pressed, the dialog
calls the corresponding Z operation which in turn updates the state and prints
some output. Output can be printed in the same dialog-box or in the application
main window, as can be seen in the figure. In summary, the prototype executes
all the specified operations through a reasonably real GUI.

Allowing end-users to play with the prototype as with a final application
is important but they should do it trying to see if you (the requirement engi-
neer) have correctly understood what they asked you for. For instance, executing
AccountsInRange from the initial state of the system (Figure 1) says little about
whether requirement (R2) has been correctly understood or not, because the
answer will be the empty set regardless of the values of a? and b?. Therefore, it
would be better if the operation is executed when the state of the system contains
some client accounts with different balances. One possible way of doing this is
entering some clients and transactions by using the different menus and options.

6

Clearly, this is annoying, time consuming and error prone. Alternatively, you can
think of a state predicate such that every possible solution would enable satisfac-
tory executions of the operation. For example, solutions to # ran accounts > 3
are partial functions that contain at least four elements in the range, which
implies at least three elements in the domain. Then, if the state from which
AccountsInRange is executed satisfies that formula, dom(accounts B (a? . . b?))
(see AccountsInRangeOk) can be a set with different numbers of elements de-
pending on the values set for a? and b?.

The Set state option in the Tools menu allows you to enter a Z predicate
depending on the state variables of the system. {log} tries to find a solution
for the goal and, if it succeeds, this solution is bound to the state variables.
In other words, the system transitions to a state verifying that goal. Most of Z
predicates can be translated into {log} goals [7]. Hence, if you call Set state,
enter the {log} representation of # ran accounts > 3, and call AccountsInRange
there will be several accounts with different balances making it possible to set
interesting values for a? and b?, thus generating different listings. This would
allow your end-users to validate requirement (R2) through the prototype by
evaluating whether its answers are correct with respect to their expectations.
Finding solutions to state predicates is further discussed in Sect. 5.

However, why # ran accounts > 3 is the proper condition? Are there other
conditions that should be sought? How can they be discovered? Model-based
testing (MBT) methods face a similar problem. In Sect. 6 we propose to apply
the Test Template Framework (TTF) [32], a MBT method tailored to the Z
notation, to discover the key conditions to validate user requirements.

Positive side effects. Say that your customer approves the prototype. This im-
plies that all the transitions recorded by the prototype (cf. panel State transi-
tions) are correct. You can use them to conduct system and acceptance testing
because they represent the runs that your customer has validated. If the final
system behaves the same with respect to these executions, your customer should
be satisfied with the product. Note that these executions can be replayed in
the final product because they are actual values for the important variables—
however, some semi-automatic reification or refinement will be needed, see [5]
for an approach to this problem. Furthermore, if the TTF is applied to guide
the validation process, these runs can be used for unit testing too. Even more:
you have a formal specification of the requirements ready to be handed to the
programming team. All this should account for a much better product at the
price of writing a Z specification.

Warning. The prototype generation tool that we described in this introduction
is not fully implemented yet, but we think it is feasible because: translations
from Z to Prolog have already been proposed; {log} can solve many complex
set predicates [7] making it possible to implement the Set state feature; and
the TTF has been implemented by the Fastest tool which has been applied to
several Z specifications to discover complex testing specifications [4]. We believe
that the problem is putting all these techniques and tools to work together.

7

2 Brief Introduction to the Z notation

Z is a formal specification language based on first-order logic and set theory [30].
It can be used to specify software systems in many different ways. However, in
this paper we will consider that specifications take the form of state machines,
which is how the notation is widely used. This way of writing specifications is
based on a set of interpretations and conventions. Then, all the results presented
in this paper hold if specifiers follow them. We will introduce some details of Z
by describing the meaning of the specification presented in Figure 1, which for-
malizes part of (R1) and (R2). UID and NAME are two uninterpreted sorts
(called basic or given types in Z). ERP is a so-called schema declaring two vari-
ables, clients and accounts. clients is a partial function from UID into NAMES .
ERP also restricts the possible values of clients and accounts to those that have
equal domains. clients represents the set of agents who are currently clients of
the company; accounts holds the current balance of each client’s account. In this
way, ERP is the state space of the state machine. In Z, ordered pairs are written
as a 7→ b, and partial functions are sets of ordered pairs. Then, InitERP simply
states that in the initial state both partial functions are empty.

NewClientOk is an operation schema because it defines a state transition.
This can be noted by the ∆ERP expression. ∆ERP declares clients, accounts,
clients ′ and accounts ′ where clients ′ and accounts ′ represent the value of clients
and accounts in the after-state. In Z state transitions can also consume inputs
and produce outputs. Inputs variables are decorated with ‘?’ while output ones
with ‘!’. The predicate part of schema NewClientOk states the pre-conditions
and post-conditions that define the operation. In this case, the agent for whom
the account is being opened must be new to the company; this is formalized
by asking that his/her ID must not belong to the domain of clients. If this is
the case, his/her ID and name are added to the client “database”; and a new
account whose balance is zero is added. Note how set expressions are used even
for partial functions and how the new state is defined. For instance, accounts ′ =
accounts ∪{u? 7→ 0} states that the value of accounts in the after-state must be
equal to its value in the before-state plus the ordered pair u? 7→ 0.

Schema ClientAlreadyExists states that the system must remain the same
when the client already exists. This is formalized by the expression ΞERP which
implicitly cojoins clients ′ = clients ∧ balances ′ = balances to the schema. The
final operation, NewClient , is specified as the disjunction of the two previous
schemas. NewClient is also a schema defined by a schema expression.

Since the specification of the other operations follows a similar structure, we
will only comment about the new expressions. ⊕ is a relational operator defined
as f ⊕ g = (dom g −C f) ∪ g where −C is the domain anti-restriction operator.
That is, A −C f = {p : f | p.1 /∈ A}. In turn, C, used in AccountsInRangeOk ,
is the domain restriction operator defined as A C f = {p : f | p.1 ∈ A}. These
operators are part of the Z mathematical toolkit (ZMT) [26], which is a rich and
expressive collection of mathematical operators supported by Z. In particular,
we would like to emphasize that the notion of set is essential in Z because it is
used to define binary relations, partial and total functions, sequences and bags.

8

Therefore, it is tantamount to the success of an animation or rapid prototyping
tool for Z specifications to be based on a powerful, efficient set constraint solver.

3 Brief Introduction to {log}
{log} [9, 10, 25] is a constraint logic programming (CLP) language that extends
Prolog with general forms of sets and basic set-theoretic operations in the form of
primitive constraints. Sets are primarily designated by set terms, that is, terms
of one of the forms: {}, whose interpretation is the empty set, or {t1, . . . , tn | s},
where s is a set term, whose interpretation is the set {t1} ∪ {t2} ∪ · · · ∪ {tn} ∪ s.
The kind of sets that can be constructed in {log} are the so-called hereditarily
finite sets, that is finitely nested sets that are finite at each level of nesting. Note
that similarly to Prolog’s lists, a set {t1, . . . , tn | s} can be partially specified,
in that either some of its elements t1, . . . , tn or the remaining part s can contain
unbound variables (hence “unknowns”). Sets can be also denoted intentionally
by set formers of the form {X : exists([Y1, . . . ,Yn],G)}, where G is a {log}-goal
(see below) and X,Y1, . . . ,Yn are variables occurring in G. Finally, sets can be
denoted by interval terms, that is terms of the form int(a, b), where a and b are
integer terms, whose interpretation is the integer interval [a, b].

Basic set-theoretic operations are provided in {log} as predefined predicates,
and dealt with as constraints. For example, the predicates in and nin are used
to represent membership and not membership, respectively; the predicate subset
represents set inclusion (i.e., subset(r, s) holds if and only if r ⊆ s holds); while
inters represents the intersection relation (i.e., inters(r, s, t) holds if and only if
t = r∩s). Basically, a {log}-constraint is a conjunction of such atomic predicates.
For example,

1 in R & 1 nin S & inters(R,S,T) & T = {X}

where R, S, T and X are variables, is an admissible {log}-constraint, whose
interpretation states that set T is the intersection between sets R and S, R must
contain 1 and S must not, and T must be a singleton set.

The original collection of set-based primitive constraints has been extended
in [22] to include simple integer arithmetic constraints over Finite Domains as
provided by CLP(FD) systems (cf. e.g. [24]).

The {log}-interpreter includes a constraint solver that is able to check sat-
isfiability of {log}-constraints with respect to the underlying set and integer
arithmetic theories. Moreover, when a constraint c holds, the constraint solver
is able to compute, one after the other, all its solutions (i.e., all viable assign-
ments of values to variables occurring in c). In particular, automatic labeling is
called at the end of the computation to force the assignment of values from their
domains to all integer variables occurring in the constraint, leading to a chrono-
logical backtracking search of the solution space. Possibly, remaining irreducible
constraints are also returned as part of the computed answer.

Clauses, goals, and programs in {log} are defined as usual in CLP. In particu-
lar, a {log}-goal is a formula of the form B1 & B2 & · · · & Bk, where B1, . . . ,Bk

9

are either user-defined atomic predicates, or atomic {log}-constraints, or dis-
junctions of either user-defined or predefined predicates, or Restricted Universal
Quantifiers (RUQs). Disjunctions have the form G1 or G2, where G1 and G2

are {log}-goals, and are dealt with through non-determinism: if G1 fails then
the computation backtracks, and G2 is considered instead. RUQs are atoms
of the form forall(X in s, exists([Y1, . . . ,Yn],G)), where s denotes a set and G
is a {log}-goal containing X,Y1, . . . ,Yn. The logical meaning of this atom is
∀X (X ∈ s ⇒ ∃Y1, . . . ,Yn : G), that is G represents a property that all el-
ements of s are required to satisfy. When s has a known value, the RUQ can
be used to iterate over s, whereas, when s is unbound, the RUQ allows s to be
non-deterministically bound to each set satisfying the property G .

The following is an example of a {log} program:

is rel(R) :- forall(P in R, exists([X,Y],P = [X,Y])).
dom({}, {}).
dom({[X,Y]/Rel},Dom) :- dom(Rel,D) & Dom = {X/D} & X nin D.

This program defines two predicates, is rel and dom. is rel(R) is true if R is a
binary relation, that is a set of pairs of the form [X,Y]. dom(R,D) is true if D is
the domain of the relation R. The following is a goal for the above program:

R = {[1, 5], [2, 7]} & is rel(R) & dom(R,D)

and the computed solution for D is D = {1, 2}. It is important to note that
is rel(R) can be used both to test and to compute R; similarly, dom(R,D) can
be used both to compute D from R, and to compute R from D, or simply to test
whether the relation represented by dom holds or not.

As can be seen, is rel and dom are {log} implementations of the corresponding
concepts in the ZMT. They are part of a {log} library implementing almost all
the ZMT [7]. Some elements of the ZMT are not supported yet because they are
beyond of set theory and, in some cases, would require some extensions to {log}
or a more complex translation. For example, generic and axiomatic definitions
and recursive types are not fully yet supported.
{log} has important advantages compared to other Prolog-based tools that

can deal with sets. With respect to the simpler scheme which constructs set
abstractions on top of an existing Prolog system, typically by using lists (cf. e.g.
[21]), {log} demonstrates its superiority whenever one has to deal with partially
specified sets. For example, even the simple problem of comparing two sets, such
as {a | X } and {b | Y }, may lead to an infinite collection of answers when
sets and set operations are implemented using lists, whereas in {log} it is dealt
as a set unification problem [12] which admits the single more general solution
X = {b | S} and Y = {a | S} where S is a new variable. Similar considerations
hold also when the negative counterparts of the basic set-theoretic operations,
such as ‘not equal’ and ‘not member’, are taken into account. The use of the
list-based implementation of sets, in conjunction with the Negation as Failure
rule provided by most implementations of Prolog, leads to well-known problems
whenever non-ground atoms are involved.

10

Viewing sets as first-class entities and operations on sets as constraints, as
done in {log}, provides a much more convenient solution. With respect to other
proposals which deal with set constraints, such as [13], the main advantage
of {log} is its generality: sets in {log} can contain elements of any type, can
be nested and partially specified, whereas sets in the so-called set-constraint
languages are restricted to flat sets of known integer elements. Moreover these
proposals usually require a finite domain (i.e. a set of sets) is specified for each
set variable occurring in a constraint, whereas this is not the case for {log}. On
the other hand, the (incomplete) solvers of the set-constraint languages turn out
to be in many cases more efficient than the general solver of {log}.
{log} is fully implemented in Prolog and can be downloaded from [25].

4 Automatic Prototype Generation from Z Specifications

Generating a Prolog prototype from a Z specification involves the automatic
translation from Z into Prolog. There are several proposals [8, 31, 3, 17, 14, 29,
33, 18, 37, 15, 23, 35, 7] that confirm that it is possible to implement such a com-
piler. There are also similar works for the B method [34, 1, 16] which defines a
mathematical library like the ZMT. However, most of these works are aimed
at animating the specification rather than using it as a means to validate user
requirements. Then, they do not pay attention to equip the prototype with an
acceptable user interface. Animation is thought to be a verification activity car-
ried out by software engineers who want to analyze if a specification verifies
some properties; in this sense animation is a complement or an alternative to
proof. Instead, we think that if the resulting (Prolog) program is augmented
with a GUI, animation becomes rapid prototyping and can be used (also) for
functional requirements validation. That is, the prototype can be used by end-
users to validate whether or not requirement engineers have understood what
the system is supposed to do. Sterling et al. [31] aim at a similar target but they
think in a Z-to-Prolog compiler that generates a command-line-like program that
users are supposed to play with. We think that this is impractical. Besides, only
a handful of these works [1, 23, 16] rely on a powerful, set-oriented constraint
language implementing set constraint satisfaction, and even in these cases the
underlying mathematics are not described in detail. B-Motion and Brama [28,
19] are two tools based on the B method which go in the same direction pro-
posed here. B-Motion is based on ProB [20]. Both tools seem to be oriented to
graphically represent software-controlled physical systems rather than informa-
tion systems as the one described in the motivation example and the two other
examples available on-line [6].

Therefore, we propose to define a simple, GUI specification language (GEL)
of which Figure 3 is an example. This language should allow engineers to define
the structure of a GUI and how it connects with the (Prolog) program generated
from the Z specification. This GEL would not need to express the behavior of
the GUI (for instance, specify when part of the GUI should be disabled).

11

GUI specification for ERP
Pull-down menu Accounts has

Option New client opens Add new client
Option Inform transaction opens Add a credit or debit
Option Accounts in range opens List all accounts in range

end of menu

. .

Dialog-box Add a credit or debit calls Transaction where
n? is read by dom clients
n? is a list labeled as Select ID
m? is a int labeled as Amount

end of dialog box

Dialog-box List all accounts in range calls AccountsInRange where
a? is a int labeled as Min value
b? is a int labeled as Max value
r ! is a text labeled as Accounts ID in range

end of dialog box

end of GUI specification

Fig. 3: GUI specification of the Z specification of Figure 1

Then, after a meeting with the client, requirement engineers write Z and GUI
specifications and use the prototype generation tool to get the first prototype.
In this way, they can go to the next meeting with a prototype over which end-
users can validate the requirements [27]. If users propose changes, the Z and GUI
specifications are changed accordingly and the tool is run again. This allows an
iterative, prototype-based process of requirement elicitation and validation.

The Z specification can be compiled into a Prolog program by a combina-
tion between the proposals by Sterling, Ciancarini and Turnidge [31] and by
Cristiá, Rossi and Frydman [7]. The main contribution here is to use {log} as
the constraint solver instead of the list-based implementation of sets proposed
by Sterling and his colleagues because this enables the possibility of implement-
ing the Set State command discussed in Sect. 5 and the validation method
introduced in Sect. 6. Besides, the tool must take into account also the GUI
specification accompanying the Z specification. Here XPCE, the SWI-Prolog
native GUI library [36], comes handy because it allows a seamless integration of
the functional (Z) and the GUI specifications.

The main rules for compiling GUI specifications are the following (follow
figures 3 and 4 as an aid to understand these rules):

1. The GUI is implemented inside a XPCE frame object.
2. The menu-bar is implemented as a XPCE menu bar object.
3. The GUI specification must contain at least one ‘pull-down menu’ directive.
4. Each ‘pull-down menu’ directive is compiled as a XPCE popup object.
5. Each ‘option’ directive in a ‘pull-down menu’ must open a ‘dialog-box’.
6. Each ‘option’ directive in a ‘pull-down menu’ is compiled to:

menu item(option,message(@prolog, dialogBox))

12

initERP :-
saveState({}, {}), nb setval(clients, {}), nb setval(accounts, {}),mainMenu.

mainMenu :-
Builds a menu bar according to the GUI specification. Each option
of the pull-down menus calls a predicate like readAccountsInRange below

readAccountsInRange :-
new(D, dialog(’List all accounts in range’)),
send list(D, append,

[new(M, int item(min value)), new(N, int item(max value)),
text(’Accounts ID in range’), new(B, browser),
button(enter,message(@prolog, accountsInRange,B,

M?selection,N?selection))]),
send(D, open).

accountsInRange(B,M,N) :- accountsInRangeOk(B,M,N); notARange(B,M,N).

accountsInRangeOk(B,M,N) :-
b getval(clients,C), b getval(accounts,A),
setlog(M ein int(0, 10000) &N ein int(0, 10000) &M =< N&

Y = int(M,N) & rres(Y,A,Y1) & dom(Y1,Y2) & set to list(Y2, L)),
writeOutput(B, L), saveNewState(C,A).

Fig. 4: Code excerpt of the prototype of the Z specification shown in Figure 1

where dialogBox is a Prolog predicate implementing the dialog-box that the
option must open.

7. Each dialog-box is implemented as a XPCE dialog object.
8. Each dialog-box must call an existing Z operation.
9. Each dialog-box must indicate what kind of widget must be used for each and

every input and output variable declared in the corresponding Z operation.
10. text is implemented as a XPCE text item object for inputs, and as a browser

for outputs; int as int item; list as list browser; etc.
11. A ‘is read by’ directive in a ‘dialog-box’ directive simply states that the input

variable is read by means of another expression. The selection made through
the expression is passed as the value for the input variable.

12. When the enter button in a dialog-box is pressed the following is executed:

button(enter,message(@prolog,Operation, Input))

where Operation is a Prolog predicate implementing the corresponding Z
operation (this code was generated when the Z specification was compiled)
and Input are the input variables waited by the Z operation where each actual
value corresponds to one of the values read by the widgets of the dialog-box.

Two more examples of this translation can be downloaded from [6]. They
include the Z and GUI specifications and the Prolog+{log}+XPCE program.

13

5 Solving State Predicates for Requirement Validation

In this section we discuss the Set state feature presented in the introduction.
The inclusion of this feature is based on the following observation: validating
some functional requirements involves taking the prototype to a state such that
state variables satisfy a (complex) predicate. In turn, this can be achieved in
three ways: a) use the prototype’s GUI to put itself in the desired state; b) write
a simple Prolog predicate where each state variable is bound to the desired value
and then execute the prototype from this state; and c) write the state predicate,
give it to a constraint solver, and use its answer as the prototype’s new state.

The first option is annoying, time consuming and error prone; this is the
one discussed in [31]. The second one, is error prone because the values may be
wrong. It can be improved by: writing the state predicate as in c), proposing
a solution to it as in b), and asking the constraint solver whether this solution
indeed satisfies the predicate. If it answers “no”, try another value. This may take
some time but it is safe. However, the best option is c) because the constraint
solver does all the work—except proposing the state predicate, see Sect. 6.

The key condition for c) to be feasible is to have a constraint solver capable of
solving (complex) Z predicates. Since Z predicates are first-order predicates over
the set theory, only a constraint solver for such set theory can deliver the desired
results. {log} may be such a constraint solver because, according to the results
we have obtained when we used it as a test case generator for Fastest [7], it is able
to solve many complex Z predicates. In effect, when {log} is used as Fastest’s
test case generator it needs to find solutions to complex Z predicates describing
equally complex test conditions. However, not all possible Z predicates can be
solved by {log} in its current state, since many Z facilities are implemented
as user-defined predicates and the {log} interpreter can not guarantee efficient
processing or even termination for all the considered formulas.

Therefore, the Set state menu option of the prototypes generated by our
method would wait for either a Z predicate or a {log} goal, translate it into {log}
in the first case, call it and use its answer to set the new state of the prototype.
The following considerations must be taken into account:

1. If a Z predicate is entered it would be automatically translated into a {log}
goal [7]. However, there are cases in which an automatic translation may not
yield the best {log} code in the sense of {log} being able to find a solution
for it in a reasonable time. An alternative could be to let users to edit the
resulting {log} goal to help the tool to find a solution.

2. Typing information about the state variables must be entered along the goal;
this has been discussed in [7].

3. Z basic types (i.e. UID and NAME in Figure 1) pose a problem because
their elements have no structure and so {log} generates variables instead of
constants. This can be solved by post-processing {log}’s answer.

4. If some {log} goal entered by the user is too complex to be solved, (s)he can
write special-purpose {log} predicates to help the tool to find a solution.

14

For example, # ran accounts > 3, i.e. the state predicate discussed in the
introduction, can be translated as follows:

pfunFromRan(D,R,Accounts) & (1)

solve(size(R,SR) & SR > 3) & (2)

subset(R, int(−10000, 10000) & is pfun(Clients) & (3)

dom(Clients,D). (4)

where: (1) builds Accounts from its range, R, and with domain included in D
(note that the solution must be a value for Accounts and not only for its range
as might be suggested by the original Z predicate); (2) sets the size of R to
something greater than 3; (3) gives type information of R and Clients; and (4) is
the invariant. {log} immediately returns the following:

Accounts = {[g45,−10000], [g30,−9999], [g15,−9998], [g00,−9997]}
Clients = {[g45, g630], [g30, g573], [g15, g516], [g00, g459]}

6 Rigorous Requirement Validation Based on Prototypes

In this section we discuss how scenarios for requirement validation can be au-
tomatically generated from the Z specification. These scenarios are a guide for
users so they can chose which are worth to be explored and which are not. Each
of these scenarios will be given by a Z predicate in terms of the state and input
variables of a given Z operation. Then, each scenario will contribute to validate
the requirements formalized by the corresponding Z operation. In order to per-
form the validation, the software engineer must enter each of them in the Set
state function discussed in Sect. 5 and then execute the implementation of the
corresponding Z operation. End-users must observe the output generated by the
prototype and classify it as correct or incorrect.

Our proposal for a rigorous requirement validation process based on pro-
totypes generated from Z specifications (of the requirements themselves) is to
apply the Test Template Framework (TTF) [32, 4]. The TTF is a model-based
testing (MBT) method tailored to the Z notation. It proceeds by dividing the
input space of each Z operation (of a given specification) into so-called test con-
ditions. In this context we will use, instead, the term validation condition. Each
validation condition is given by a Z predicate on the input and state variables
of the corresponding Z operation. Each of them describes the conditions for a
test case. Precisely, we propose to use these conditions for requirement valida-
tion (and, obviously, to later test the implementation). In this sense, validating
a requirement consists of:

1. Put the prototype in the state described by the validation condition;
2. Execute the implementation of the Z operation with the input values given

by the test condition; and
3. Observe the prototype’s behavior to determine if it satisfies end-users.

15

Fastest is a MBT tool that provides tool support for the TTF [4]. It can au-
tomatically generate validation conditions by applying so-called testing tactics.
A testing tactic is a systematic and general rule to divide the input space of Z
operations. The same testing tactics can be applied for requirement validation.
For example, a classical testing tactic is Disjunctive Normal Form (DNF), which
rewrites the Z operation in DNF, takes the precondition of each disjunct, and
divides its input space with these predicates.

For example, the input space of Transaction (Figure 1) is:

TransactionIS ==
[clients : UID 7→ NAME ; accounts : UID 7→ Z; n? : UID ; m? : Z]

So, when DNF is applied to it the following validation conditions are generated:

TransactionDNF
1 == [TransactionIS | n? ∈ dom accounts ∧ m? 6= 0]

TransactionDNF
2 == [TransactionIS | n? /∈ dom accounts]

TransactionDNF
3 == [TransactionIS | m? = 0]

Therefore, if the prototype is used in each of these conditions, end-users will be
validating whether requirement engineers correctly understood (at least part of)
what it means to record a transaction of a client. For instance, they will try to
record a proper transaction (TransactionDNF

1), a transaction of a nonexistent
client (TransactionDNF

2), etc. As suggested by the TTF, more testing tactics
can be applied to further divide the validation conditions obtained so far, thus,
getting more revealing ones. Therefore, if engineers and users find that some
validation condition should be verified more deeply they can apply more testing
tactics to this validation condition to further divide it in more complex cases.

In summary, if Fastest is used to generate the validation conditions, and then
each of them is successively entered in Set state (cf. Sect. 5), software engineers
will have a tool that will assist them in generating and validating a prototype
(besides making early progress with testing). {log} has already proved to solve
many of these conditions [7].

7 Conclusions

We have shown that it would be possible to develop a prototype generator for
Z specifications based on the {log} constraint solver. These prototypes could
include rich GUIs that would make end-users to be able to use them for re-
quirement validation. The TTF could assist software engineers in conducting
a systematic requirement validation process, and {log} could help them in au-
tomating some fundamental activities. This technique would also help during
the testing stage. The proposal would have a number of advantages that would
pay-off the effort of writing a Z specification.

However, many issues need to be discussed and some problems need to be
solved. For example, how prototypes would interface with external systems? How
this can be described in Z? Should it be described in Z? Should it be prototyped?

16

What if a validation condition asks for a state that cannot be reached by a
sequence of the operations available in the specification? Should this condition
be validated or not? What is a precise characterization of the class of systems
within the scope of this proposal? Finding an answer to all these questions,
however, seems feasible and is left for future work.

References

1. Bouquet, F., Legeard, B., Peureux, F.: CLPS-B - A constraint solver to animate a
B specification. STTT 6(2), 143–157 (2004)

2. Bowen, J.P., Hall, J.A. (eds.): Z User Workshop, Cambridge, UK, 29-30 June 1994,
Proceedings. Workshops in Computing, Springer/BCS (1994)

3. Breuer, P.T., Bowen, J.P.: Towards correct executable semantics for Z. In: Bowen
and Hall [2], pp. 185–209

4. Cristiá, M., Albertengo, P., Frydman, C.S., Plüss, B., Rodŕıguez Monetti, P.: Tool
support for the Test Template Framework. Softw. Test., Verif. Reliab. 24(1), 3–37
(2014)

5. Cristiá, M., Hollmann, D., Albertengo, P., Frydman, C.S., Monetti, P.R.: A lan-
guage for test case refinement in the Test Template Framework. In: Qin, S., Qiu,
Z. (eds.) ICFEM. Lecture Notes in Computer Science, vol. 6991, pp. 601–616.
Springer (2011)

6. Cristiá, M., Rossi, G.: Protoype examples for SETS 2014, https://www.dropbox.
com/s/rgub9d3i10coht8/sets2014-examples.tar.gz

7. Cristiá, M., Rossi, G., Frydman, C.S.: {log} as a test case generator for the Test
Template Framework. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM.
Lecture Notes in Computer Science, vol. 8137, pp. 229–243. Springer (2013)

8. Doma, V., Nicholl, R.A.: EZ: A system for automatic prototyping of Z specifi-
cations. In: Prehn, S., Toetenel, W.J. (eds.) VDM Europe (1). Lecture Notes in
Computer Science, vol. 551, pp. 189–203. Springer (1991)

9. Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: A language for programming in
logic with finite sets. J. Log. Program. 28(1), 1–44 (1996)

10. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

11. Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for
lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3) (2008)

12. Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory Pract. Log. Program.
6(6), 645–701 (Nov 2006), http://dx.doi.org/10.1017/S1471068406002730

13. Gervet, C.: Conjunto: Constraint propagation over set constraints with finite set
domain variables. In: Hentenryck, P.V. (ed.) ICLP. p. 733. MIT Press (1994)

14. Goodman, H.S.: The Z-into-Haskell tool-kit: An illustrative case study. In: Bowen,
J.P., Hinchey, M.G. (eds.) ZUM. Lecture Notes in Computer Science, vol. 967, pp.
374–388. Springer (1995)

15. Grieskamp, W.: A computation model for Z based on concurrent constraint reso-
lution. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) ZB. Lecture Notes
in Computer Science, vol. 1878, pp. 414–432. Springer (2000)

16. Hallerstede, S., Leuschel, M., Plagge, D.: Validation of formal models by refinement
animation. Sci. Comput. Program. 78(3), 272–292 (2013)

17. Hasselbring, W.: Animation of Object-Z specifications with a set-oriented proto-
typing language. In: Bowen and Hall [2], pp. 337–356

17

18. Hewitt, M.A., O’Halloran, C., Sennett, C.T.: Experiences with PiZA, an anima-
tor for Z. In: Bowen, J.P., Hinchey, M.G., Till, D. (eds.) ZUM. Lecture Notes in
Computer Science, vol. 1212, pp. 37–51. Springer (1997)

19. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models with
B-Motion Studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) Formal Methods
for Industrial Critical Systems, Lecture Notes in Computer Science, vol. 5825,
pp. 202–204. Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-04570-7_17
20. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Keijiro, A., Gnesi,

S., Mandrioli, D. (eds.) FME. Lecture Notes in Computer Science, vol. 2805, pp.
855–874. Springer-Verlag (2003)

21. Munakata, T.: Notes on implementing sets in prolog. Commun. ACM 35(3), 112–
120 (Mar 1992), http://doi.acm.org/10.1145/131295.131300

22. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain constraints
and CLP with sets. In: PPDP. pp. 219–229. ACM (2003)

23. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator
and model checker. In: Davies, J., Gibbons, J. (eds.) Integrated Formal Methods.
Lecture Notes in Computer Science, vol. 4591, pp. 480–500. Springer-Verlag (2007)

24. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

25. Rossi, G.: {log} (2008), http://www.math.unipr.it/~gianfr/setlog.Home.html,
last access: December 2013

26. Saaltink, M.: The Z/EVES mathematical toolkit version 2.2 for Z/EVES version
1.5. Tech. rep., ORA Canada (1997)

27. Schrage, M.: Never go to a client meeting without a prototype. IEEE Software
21(2), 42–45 (2004)

28. Servat, T.: BRAMA: A new graphic animation tool for B models. In: Julliand,
J., Kouchnarenko, O. (eds.) B 2007: Formal Specification and Development in
B, Lecture Notes in Computer Science, vol. 4355, pp. 274–276. Springer Berlin
Heidelberg (2006), http://dx.doi.org/10.1007/11955757_28

29. Sherrell, L.B., Carver, D.L.: FunZ: An intermediate specification language. Com-
put. J. 38(3), 193–206 (1995)

30. Spivey, J.M.: The Z notation: a reference manual. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK (1992)

31. Sterling, L., Ciancarini, P., Turnidge, T.: On the animation of ”not executable”
specifications by Prolog. International Journal of Software Engineering and Knowl-
edge Engineering 6(1), 63–87 (1996)

32. Stocks, P., Carrington, D.: A Framework for Specification-Based Testing. IEEE
Transactions on Software Engineering 22(11), 777–793 (Nov 1996)

33. Valentine, S.H.: The programming language Z−. Information & Software Technol-
ogy 37(5-6), 293–301 (1995)

34. Waeselynck, H., Behnia, S.: B model animation for external verification. In:
ICFEM. pp. 36–45 (1998)

35. West, M.M.: The use of a logic programming language in the animation of Z
specifications. In: Dahl, V., Niemelä, I. (eds.) ICLP. Lecture Notes in Computer
Science, vol. 4670, pp. 451–452. Springer (2007)

36. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1-2),
67–96 (2012)

37. Winikoff, M., Dart, P., Kazmierczak, E.: Rapid prototyping using formal specifi-
cations. In: In Proceedings of the 21st Australasian Computer Science Conference.
pp. 279–294. Springer-Verlag (1998)

18

Introduction to the Integration
of SMT-Solvers in Rodin?

David Déharbe1, Pascal Fontaine2, Yoann Guyot3, and Laurent Voisin4

1 Federal University of Rio Grande do Norte, Brazil
2 University of Lorraine, Loria, Inria, France

3 Cetic, Belgium
4 Systerel, France

Abstract. Event-B is a system specification approach based on set the-
ory, integer arithmetics and refinement, supported by the Rodin plat-
form, an Eclipse-based IDE. Event-B development requires the validation
of proof obligations, often with set operators. This approach relies on the
existence of theorem proving techniques that handle such set constructs.
One such technique is known as Satisfiability Modulo Theory (SMT)
solving. However, there is no direct support for set-theory operators in
the standard logics supported by SMT solvers.
We have developed an ad hoc encoding approach enabling the verifica-
tion of Event-B proof obligations using SMT-solving technology. Its full
description is available in [12], and we present here the general principles.

Keywords: Event-B · SMT · Rodin

1 Introduction

Event-B [2] is a notation and a theory for formal system modeling and refine-
ment, based on first-order logic, typed set theory and integer arithmetic. The
Rodin platform [7] is an integrated design environment for Event-B. It is based
on the Eclipse framework [16], and has an extensible architecture, where features
can be integrated and updated by means of plug-ins. Event-B models must be
proved consistent; for this purpose, Rodin generates proof obligations that need
to be proved valid.

The proof obligations are represented internally as sequents, the sequent
calculus providing the basis of the verification framework. Rodin applies proof
rules to a sequent to produce zero, one or more new, usually simpler, sequents. A
proof rule producing no sequent is a discharging rule. The goal of the verification
is to build a proof tree corresponding to the application of the proof rules, where

? This work is partly supported by the project ANR-13-IS02-0001-01, the STIC
AmSud MISMT, CAPES grant BEX 2347/13-0, CNPq grants 308008/2012-0
and 573964/2008-4 (National Institute of Science and Technology for Software
Engineering—INES, www.ines.org.br), and EU funded project ADVANCE (FP7-
ICT-287563).

19

the leaves are discharging rules. In practice, the proof rules are generated by
so-called reasoners. A reasoner is a plug-in that can either be standalone or use
existing verification technologies through third-party tools.

The verification shall be automated, informative and trustable. Although full
automation is theoretically impossible, and eventually interactive theorem prov-
ing needs to be supported, fine-tuning existing automatic verification techniques
can yield significant improvements in the productivity (and usability) of the en-
gineers applying this method. Moreover, when a model is edited and modified,
large parts of the proof can be preserved if the precise facts used to validate
each proof obligation are recorded. So it is important that the reasoners inform
such sets of relevant facts, that are then used to automatically construct new
proof rules to be stored and tried for after model changes. A bonus is that other
sequents (valid for the same reason) may be discharged by these rules without
requiring another call to the reasoner. When reasoners inform counter-examples
of failed proof obligations, this is valuable information to the user to improve the
model and the invariants. We must also be aware that, when a prover is used,
either the tool itself or its results need to be certified; otherwise the confidence
in the formal development is jeopardized.

This paper presents a SMT plug-in for Rodin, enabling a verification ap-
proach that has the potential of fulfilling such requirements. Indeed, SMT solvers
can automatically handle large formulas of first-order logic with respect to some
background theories, or a combination thereof, such as different fragments of
arithmetic (linear and non-linear, integer and real), arrays, bit vectors, etc. They
have been employed successfully to handle proof obligations with tens of thou-
sands of symbols stemming from software and hardware verification. This paper
presents a new approach to encode set-theory formulas in first-order logic. The
full details of this approach are presented in [12].

Outline of the paper. Sections 2 and 3 introduce briefly the technical background
of this paper, namely SMT-solving and Event-B. The encoding approach for the
verification of sequents with set constructs using existing SMT-solvers is then
presented in section 4. In section 5, we report the results of an experimental
appraisal of this approach. We then present our conclusions in section 6.

Throughout the paper, formulas are expressed using the Event-B syntax [2],
and sentences in SMT-LIB are typeset using a typewriter font.

2 SMT Solvers

A SMT solver is basically a decision procedure for quantifier-free formulas in a
rich language coupled with an instantiation module that handles the quantifiers
in the formulas by grounding the problem. For quantified logic, SMT solvers
are of course not decision procedures anymore, but they work well in practice if
the necessary instances are easy to find and not too numerous. We refer to [4]
for more information about the techniques described in this section and SMT
solving in general.

20

The SMT-LIB initiative [5] provides a standard input language of SMT
solvers and a command language defining a common interface to interact with
SMT solvers. Some solvers (e.g. Z3 [9] and veriT [6]) implement commands that
generate a comprehensive proof for validated formulas; such a proof can then be
verified by a trusted proof checker [3]. In the longer term, besides automation
and information, trust may be obtained using a centralized proof manager.

Historically, the first goal of SMT solvers was to provide efficient decision
procedures for expressive languages, beyond pure propositional logic. The SMT-
LIB includes a number of pre-defined such “logics”, which the existing solvers
handle at least in part. But there is not yet an agreed-upon theory on sets in
the SMT-LIB. To apply a SMT solver to a proof obligation with set constructs,
one could include in this proof obligation an axiomatization of these operators.
However such axiomatization often include quantified formulas which happen
to be problematic in practice for SMT solvers. Another approach is to find an
encoding of the set operators in one of the logics defined in the SMT-LIB. We
shall present one such encoding in this paper.

Additionally to the satisfiability response, it is possible, in case of an unsat-
isfiable input, to ask for an unsatisfiable core. It may indeed be very valuable to
know which hypotheses are necessary to prove a goal in a verification condition.
For instance, the sequent (1) discussed in Section 3 and translated into the SMT
input in Figure 4 is valid independently of the assertion labeled grd1; the SMT
input associates labels to the hypotheses, guards, and goals, using the reserved
SMT-LIB annotation operator !. A solver implementing the SMT-LIB unsatis-
fiable core feature could thus return the list of hypotheses used to validate the
goals. In the case of the example in Figure 4, the guard is not necessary to prove
unsatisfiability, and would therefore not belong to a good unsatisfiable core.

Recording unsatisfiable cores for comparison with new proof obligations is
particularly useful in our context. Indeed, users of the Rodin platform will want
to modify their models and their invariants, resulting in a need of revalidating
proof obligations mostly but not fully similar to already validated ones. If the
changes do not impact the relevant hypotheses and goal of a proof obligation,
comparison with the (previous) unsatisfiable core will discharge the proof obliga-
tion and the SMT solver will not need to be run again. Also a same unsatisfiable
core is likely to discharge similar proof obligations, for instance generated for a
similar transition, but differing for the guard.

3 Event-B

We introduce the Event-B notation through excerpts of a simple example: a
model of a simple job processing system consisting of a job queue and several
active jobs. Set JOBS represents the jobs. The state of the model has two vari-
ables: queue (the jobs currently queued) and active (the jobs being processed).
This state is constrained by the following invariants:

inv1 : active ⊆ JOBS (typing)
inv2 : queue ⊆ JOBS (typing)

21

inv3 : active ∩ queue = ∅ (a job can not be both active and queued)

One of the events is when a job leaves the queue to become active:

Event SCHEDULE =̂ (some queued job j becomes active)
any

j
where

grd1 : j ∈ queue (the job j is in the queue)
then

act1 : active := active ∪ {j} (the job becomes active)
act2 : queue := queue \ {j} (the job is removed from the queue)

end

The invariant inv3 is preserved by this event, if the following sequent is valid:

inv1, inv2, inv3, grd1 ` (active ∪ {j})︸ ︷︷ ︸
active’

∩ (queue \ {j})︸ ︷︷ ︸
queue’

= ∅ .
(1)

Thus, the corresponding proof obligation consists in showing that the following
formula is unsatisfiable:

active ⊆ JOBS ∧ queue ⊆ JOBS ∧ active ∩ queue = ∅ ∧ j ∈ queue ∧
¬((active ∪ {j}) ∩ (queue \ {j}) = ∅) .

A typical development in Event-B contains hundreds or even thousands of such
proof obligations, and often some share many common sub-formulas.

4 Translating Event-B to SMT

Figure 1 gives a schematic view of the cooperation framework between Rodin
and the SMT solver. Within the Rodin platform, each proof obligation is repre-
sented as a sequent, i.e. a set of hypotheses and a conclusion. These sequents are
discharged using Event-B proof rules. Our strategy to prove an Event-B sequent
is to build an SMT formula, call an SMT solver on this formula, and, on success,
introduce a new suitable proof rule. This strategy is presented as a tactic in the
Rodin user interface. Since SMT solvers answer the satisfiability question, it is
necessary to take the negation of the sequent (to be validated) in order to build a
formula to be refuted by the SMT solver. If the SMT solver does not implement
unsatisfiable core generation, the proof rule will assert that the full Event-B se-
quent is valid (and will only be useful for that specific sequent). Otherwise an
unsatisfiable core — i.e., the set of facts necessary to prove that the formula
is unsatisfiable — is supplied to Rodin, which will extract a stronger Event-B
proof rule containing only the necessary hypotheses. This stronger proof rule
will hopefully be applicable to other Event-B sequents. If, however, the SMT
solver is not successful, the application of the tactic has failed and the proof tree
remains unchanged.

22

RODIN

Event B sequent

negation of
Event B sequent

SMT formula

SMT response:
∙ SAT
∙ UNSAT
 ◦ proof
 ◦ relevant
 hypotheses

Event B
proof rule

SMT solver

Fig. 1. Schematic view of the interaction between Rodin and SMT solvers.

The SMT-LIB standard proposes several “logics” that specify the interpreted
symbols that may be used in the formulas. Currently, however, none of these
logics fits exactly the language of the proof obligations generated by Rodin. There
exists a proposal for such a logic [14], but the existing SMT solvers do not yet
implement corresponding reasoning procedures. Our pragmatic approach is thus
to identify subsets of the Event-B logics that may be handled by the current tools,
either directly or through some simple transformations. The translation takes as
input the Event-B proof obligations. The representation of proof obligations is
such that each identifier has been annotated with its type. In the type system,
integers and Booleans are predefined, and the user may create new basic sets, or
compose existing types with the powerset and Cartesian product constructors.
Translating Boolean and arithmetic constructs is mostly straightforward, since
a direct syntactic translation may be undertaken for some symbols: Boolean
operators and constants, relational operators, and most of arithmetic (division
and exponentiation operators are currently translated as uninterpreted symbols).
As an example of transformation of an Event-B sequent to an SMT formula,
consider the sequent with goal 0 < n + 1 under the hypothesis n ∈ N; the type
environment is {n ◦◦ Z} and the generated SMT-LIB formula is:

(set-logic AUFLIA)

(declare-fun n () Int)

(assert (>= n 0))

(assert (not (< 0 (+ n 1))))

(check-sat)

The main issue in the translation of proof obligations to SMT-LIB is the
representation of the set-theoretic constructs. Different approaches are possible,
especially considering the expressiveness of the set operators found in the proof
obligation. For instance, the approach presented in [10] encodes sets as predi-

23

cates, but does not make it possible to reason about sets of sets. We present here
an approach that removes this restriction. It uses the ppTrans translator [13],
already available in the Rodin platform; it removes most set-theoretic constructs
from proof obligations by systematically expanding their definitions. It translates
an Event-B formula to an equivalent formula in a subset of the Event-B mathe-
matical language (see the grammar of this subset in Fig. 2). The sole set-theoretic
symbol is the membership predicate. In addition, the translator performs decom-
position of binary relations and purification, i.e., it separates arithmetic, Boolean
and set-theoretic terms. Finally ppTrans performs basic Boolean simplifications
on formulas. In the following, we provide details on those transformations, using
the notation ϕ ϕ′ to express that the formula (or sub-term) ϕ is rewritten to
ϕ′.

P ::= P ⇒ P | P ≡ P | P ∧ · · · ∧ P | P ∨ · · · ∨ P |
¬P | ∀L · P | ∃L · P |
A = A | A < A | A ≤ A |M ∈ S | B = B | I = I

L ::= I · · · I
I ::= Name
A ::= A−A | A div A | A mod A | A expA |

A + · · ·+ A | A× · · · ×A | −A | I | IntegerLiteral
B ::= true | I
M ::= M 7→M | I | integer | bool
S ::= I

Fig. 2. Grammar of the language produced by ppTrans. The non-terminals are P (pred-
icates), L (list of identifiers), I (identifiers), A (arithmetic expressions), B (Boolean
expressions), M (maplet expressions), S (set expressions).

Maplet-hiding variables The rewriting system implemented in ppTrans can-
not directly transform identifiers that are of type Cartesian product. In a pre-
processing phase, such identifiers are thus decomposed, so that further rewriting
rules may be applied. This decomposition introduces fresh identifiers of scalar
type (members of some given set, integers or Booleans) that name the compo-
nents of the Cartesian product. Technically, this pre-processing is as follows. We
assume the existence of an attribute T , such that T (e) is the type of expression
e. Also, let fv(e) denote the free identifiers occurring in expression e. The decom-
position of the Cartesian product identifiers is specified, assuming an unlimited
supply of fresh identifiers (e.g. x0, x1,. . .), using the following two definitions ∇
and ∇T :

∇(i) =

{
∇T (T (i)) if i is a product identifier,
i otherwise.

∇T (T) =

{
∇T (T1) 7→ ∇T (T2) if ∃T1, T2 ·T = T1 × T2,
a fresh identifier xi otherwise.

24

For instance, assume x ◦◦ Z × (Z × Z); then ∇(x) = x0 7→ (x1 7→ x2) and
fv(∇(x)) = {x0, x1, x2} are fresh identifiers.

The pre-processing behaves as follows:

– Quantified sub-formulas ∀x · ϕ(x), such that x is a product identifier, are
rewritten to

∀fv(∇(x)) · ϕ[∇(x)/x],

where e[e′/x] denotes expression e where expression e′ has been substituted
for all free occurrences of x.
Ex. ∀a·a = 1 7→ (2 7→ 3) ∀a0, a1, a2 · a0 7→ (a1 7→ a2) = 1 7→ (2 7→ 3).

– Let ψ denote the top-level formula and let x1 . . . xn be the free Cartesian
product identifiers of ψ. Then:

ψ ∀fv(∇(x1)) · · · fv(∇(xn))·
(x1 = ∇(x1) ∧ · · ·xn = ∇(xn))⇒ ψ[∇(x1)/x1] · · · [∇(xn)/xn].

Ex. ψ ≡ a = b ∧ a ∈ S with typing {a ◦◦ S, b ◦◦ S, S ◦◦ P(Z× Z)}:

ψ ∀x0, x1, x2, x3 ·
(a = x0 7→ x1 ∧ b = x2 7→ x3)⇒

(x0 7→ x1 = x2 7→ x3 ∧ x0 7→ x1 ∈ S)

Purification The goal of this phase is to obtain pure terms, i.e. terms that
do not mix symbols of separate syntactic categories: arithmetic, predicate, set,
Boolean, and maplet symbols. This is done by introducing new variables. In
Event-B, heterogeneous terms result from the application of symbols with a
signature with different sorts (e.g. symbol ⊆ yields a predicate from two sets).
This phase also eliminates some syntactic sugar. Figure 3 depicts the different
syntactic categories, how the Event-B operators relate them, and the effect of
desugarization. There is an arrow from category X to category Y if a term from
X may have an argument in Y . For instance . ∈ labels the arrow from P to A
since the left argument of ∈ may be an arithmetic term, e.g. in x+ y ∈ S.

First, let us introduce informally the notation Q?P [e∗], where Q is ∀ or ∃,
P a predicate, and e an expression in P such that the syntactic category of e
is not the same as that of its parent (identifiers are considered to belong to all
syntactic categories). This denotes the possible introduction of the quantifier Q
on a fresh variable, so that heterogeneous sub-terms in e are purified, yielding
e∗, as illustrated by the following examples:

1. ∃?(a 7→ (1 7→ 2))∗ ∈ S represents ∃x0, x1 ·x0 = 1∧x1 = 2∧a 7→ (x0 7→ x1) ∈
S as 1 and 2 are not in the same syntactic category as the maplet.

2. ∀?(a 7→ b)∗ ∈ S does not introduce a quantification and denotes a 7→ b ∈ S.

Due to lack of space, we select some rules of the rewrite system implemented
in ppTrans. The symbols relating the syntactic categories P (predicates) and
S (sets) are reduced to membership (∈) and equality (=) by application of the
rules such as:

25

=, . ∈, <,≤
J6=, . 6∈, >,≥K

{x·P | F}
{a, . . . , b}

{x·P | F}
{a, . . . , b}

J=, 6=, . 6∈K
. ∈

. ∈
J=, 6=, . 6∈K

{x·P | F}⋂
x·P | F⋃
x·P | F

7→

{a, . . . , b}
{x·P | F}

bool

A

S

MB

P

J=, 6=, 6∈,⊆, 6⊆,⊂, 6⊂,
∈

finite, partitionK

Jmin,max,
card, f()K

7→
7→

Fig. 3. The different syntactic categories and the symbols relating them: A for arith-
metic expressions, P for predicates, S for set expressions, B for Boolean expressions and
M for maplet expressions. ppTrans removes all occurrences of the constructs delimited
by double-brackets.

26

x 6= y ¬(x = y) (2)

s ⊆ t s ∈ P(t) (3)

x 6∈ s ¬(x ∈ s) (4)

finite(s) ∀a·∃b, f ·f ∈ s� a..b (5)

Moreover rules 2 and 4 are also applied when the arguments belong to other syn-
tactic categories and are responsible for the elimination of all the occurrences of
symbols 6= and 6∈. Examples to eliminate equalities between syntactic categories
S, M are:

x1 7→ x2 = y1 7→ y2 x1 = y1 ∧ x2 = y2 (6)

bool(P) = bool(Q) P ⇔ Q (7)

bool(P) = TRUE P (8)

x = f(y) y 7→ x ∈ f (9)

x = FALSE ¬(x = TRUE)
(10)

Due to the symmetry property of equality, ppTrans also applies a symmetric
version of each such rule. The symbols that embed arithmetic terms are taken
care of with rules such as:

n = card(s) ∃f ·f ∈ s�� 1..n (11)

n = max(s) n ∈ s ∧max(s) ≤ n
(12)

a � b b ≺ a (13)

a ≺ max(s) ∃x·x ∈ s ∧ a ≺ x (14)

The remaining rules perform the following roles: rewrite applications of the
set membership symbol according to the rightmost argument (e.g. 15), eliminate
some symbols (e.g. 17), and handle miscellaneous other cases:

e ∈ s↔↔ t e ∈ s←↔ t ∧ t ⊆ ran(e) (15)

e ∈ s←↔ t e ∈ s↔ t ∧ s ⊆ dom(e) (16)

e 7→ f ∈ s× t e ∈ s ∧ f ∈ t (17)

e 7→ f ∈ id e = f (18)

e 7→ f ∈ r−1 f 7→ e ∈ r (19)

e 7→ f ∈ sC r e 7→ f ∈ r ∧ e ∈ s (20)

e 7→ f ∈ pred e = f + 1 (21)

The full system consists of 80 rules. They are either sound purification rules,
or the equivalence of the left and right side terms can easily be derived from
the definitions (see [1]) of the eliminated symbols. Purification rules eliminate
heterogeneous terms and are only applied once. It is not difficult to order all
other rules such that no eliminated symbol is introduced in subsequent rules.
The rewriting system is thus indeed terminating.

Output to SMT-LIB format Once ppTrans has completed rewriting, the resulting
proof obligation is ready to be output in SMT-LIB format. The translation from
ppTrans’ output to SMT-LIB follows specific rules for the translation of the set
membership operator. For instance assume the input has the following typing
environment and formulas:

27

Typing environment Formulas
a ◦◦ S
b ◦◦ T
c ◦◦ U
A ◦◦ P(S)
r ◦◦ P(S × T)
s ◦◦ P(S × T × U)

a ∈ A
a 7→ b ∈ r

a 7→ b 7→ c ∈ s

Firstly, for each basic set found in the proof obligation, the translation pro-
duces a sort declaration in SMT-LIB. However, as there is currently no logic in
the SMT-LIB with powerset and Cartesian product sort constructors, ppTrans
handles them by producing an additional sort declaration for each combina-
tion of basic sets (either through powerset or Cartesian product). Translating
the typing environment thus produces a sort declaration for each basic set, and
combination thereof found in the input. In SMT-LIB, sorts have a name and an
arity, which is non-null for polymorphic sorts. The sorts produced have all arity
0, and for the above example, the following is produced:

S (declare-sort S 0)

T (declare-sort T 0)

U (declare-sort U 0)

P(S) (declare-sort PS 0)

P(S × T) (declare-sort PST 0)

P(S × T × U) (declare-sort PSTU 0)

Secondly, for each constant, the translation produces a function declaration
of the appropriate sort:

a ◦◦ S (declare-fun a () S)

b ◦◦ T (declare-fun b () T)

c ◦◦ U (declare-fun c () U)

A ◦◦ P(S) (declare-fun A () PS)

r ◦◦ P(S × T) (declare-fun r () PST)

s ◦◦ P(S × T × U) (declare-fun s () PSTU)

Third, for each type occurring at the right-hand side of a membership predicate,
the translation produces fresh SMT function symbols:

(declare-fun (MS0 (S PS) Bool))

(declare-fun (MS1 (S T PST) Bool))

(declare-fun (MS2 (S T U PSTU)) Bool)

The Event-B atoms can then be translated as follows:

a ∈ A (MS0 a A)

a 7→ b ∈ r (MS1 a b r)

a 7→ b 7→ c ∈ s (MS2 a b c s)

For instance, A∪{a} = A would be translated to ∀x·(x ∈ A∨x = a)⇔x ∈ A,
that is, in SMT-LIB format:

28

(forall ((x S)) (= (or (MS0 x A) (= x a)) (MS0 x A)))

While the approach presented here covers the whole Event-B mathemati-
cal language and is compatible with the SMT-LIB language, the semantics of
some Event-B constructs is approximated because some operators become unin-
terpreted in SMT-LIB (chiefly membership but also some arithmetic operators
such as division and exponentiation). However, we can recover their interpreta-
tion by adding axioms to the SMT-LIB benchmark, at the risk of decreasing the
performance of the SMT solvers. Some experimentation is thus needed to find a
good balance between efficiency and completeness.

Indeed, it appears experimentally that including some axioms of set theory
to constrain the possible interpretations of the membership predicate greatly
improves the number of proof obligations discharged. In particular, the axiom of
elementary set (singleton part) is necessary for many Rodin proof obligations.
The translator directly instantiates the axiom for all membership predicates.
Assuming MS is the membership predicate associated with sorts S and PS, the
translation introduces thus the following assertion:

(assert (forall ((x S))

(exists ((X PS)) (and (MS x X)

(forall ((y S)) (=> (MS y X) (= y x)))))))

This particular assertion eliminates non-standard interpretations where some
singleton sets do not exist. Without it, some formulas are satisfiable because of
spurious models and the SMT solvers are unable to refute them.

A small example As a concrete example of translation, we consider the sequent
presented in Section 3. Figure 4 presents the SMT-LIB input resulting from
the translation approach described in this paper. Since the proof obligation in-
cludes sets of JOBS, a corresponding sort PJ and membership predicate MS
are declared in lines 3–4. Then, the function symbols corresponding to the free
identifiers of the sequent are declared at lines 5–7. Finally, the hypotheses and
the goal of the sequent are translated to named assertions (lines 8–14).

The sequent described in this section is very simple and is easily verified by
both Atelier-B provers and SMT solvers. It is noteworthy that the plug-in in-
spects sequents to choose the most suitable encoding approach. The next section
reports experiments with a large number of proof obligations and establishes a
better basis to compare the effectiveness of these different verification techniques.

5 Experimental results

We evaluated experimentally the effectiveness of using SMT solvers as reason-
ers in the Rodin platform by means of the techniques presented in this paper.
This evaluation complements the experiments presented in [11] and reinforces
their conclusions. We established a library of 2,456 proof obligations stemming
from Event-B developments collected by the European FP7 project Deploy and
publicly available on the Deploy repository5. These developments originate from

5 http://deploy-eprints.ecs.soton.ac.uk

29

1 (set-logic AUFLIA)

2 (declare-sort JOBS 0)

3 (declare-sort PJ 0)

4 (declare-fun MS (JOBS PJ) Bool)

5 (declare-fun active () PJ)

6 (declare-fun j () JOBS)

7 (declare-fun queue () PJ)

8 (assert (! (forall ((x JOBS))

9 (not (and (MS x active) (MS x queue)))) :named inv3))

10 (assert (! (MS j queue) :named grd1))

11 (assert (! (not (forall ((x0 JOBS))

12 (not (and (or (MS x0 active) (= x0 j))

13 (MS x0 queue)

14 (not (= x0 j)))))) :named goal))

15 (check-sat)

Fig. 4. SMT-LIB input produced using the ppTrans approach.

examples from Abrial’s book [2], academic publications, tutorials, as well as
industrial case studies.

One main objective of introducing new reasoners in the Rodin platform is to
reduce the number of valid proof obligations that need to be discharged interac-
tively by humans. Consequently, the effectiveness of a reasoner is measured by
the number of proof obligations proved automatically by the reasoner.

Obviously, effectiveness should depend on the computing resources given to
the reasoners. In practice, the amount of memory is seldom a bottleneck, and
usually the solvers are limited by setting a timeout on their execution time. In the
context of the Rodin platform, the reasoners are executed by synchronous calls,
and the longer the time limit, the less responsive is the framework to the user.
We have experimented different timeouts and our experiments have shown us
that a timeout of one second seems a good trade-off: doubling the timeout to two
seconds increases by fewer than 0.1% the number of verified proof obligations,
while decreasing the responsiveness of the platform.

Table 1 compares different reasoners on our set of benchmarks. The second
column corresponds to Rodin internal normalization and simplification proce-
dures. It shows that more than half of the generated proof obligations necessitate
advanced theorem-proving capabilities to be discharged. The third column is a
special-purpose reasoner, namely Atelier-B provers. They were originally devel-
oped for the B method and are also available in the Rodin platform. Although
they are extremely effective, the Atelier-B provers now suffer from legacy issues.
The last five columns are various SMT solvers applied to the proof obligations
generated by the plug-in. The SMT solvers were used with a timeout of one sec-
ond, on a computer equipped with an Intel Core i7-4770, cadenced at 3.40 GHz,
with 24 GB of RAM, and running Ubuntu Linux 12.04. They show decent results,
but they are not yet as effective reasoners as the Atelier-B theorem provers.

30

N
u

m
b

er
o
f

p
ro

o
f

o
b

li
g
a
ti

o
n

s

R
o
d

in

A
te

li
er

-B

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

2456 1169 2260 2017 2218 2051 2160 2094

Table 1. Number of proof obligations discharged by the reasoners.

Although this comparison is interesting to evaluate and compare the different
reasoners, it is not sufficient to evaluate the effectiveness of the approach pre-
sented in this paper. Indeed, nothing prevents users to use several other reasoners
once one has failed to achieve its goal. In Table 2, we report how many proof
obligations remain unproved after applying the traditional reasoners (Atelier-B
theorem provers and the Rodin reasoner) in combination with each SMT solver,
and with all SMT solvers.

N
u

m
b

er
o
f

p
ro

o
f

o
b

li
g
a
ti

o
n

s
le

ft

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

A
ll

S
M

T
so

lv
er

s

196 114 61 94 103 92 31

Table 2. Number of proof obligations not discharged by special-purpose reasoners and
by each SMT solver.

Each SMT solver seems a useful complement to the special-purpose provers.
However, we would also like to know whether the reasoning capacity of some
of these solvers is somehow subsumed by another solver, or whether each SMT
solver could provide a significant contribution towards reducing the number of
proof obligations that need to be discharged by humans. Table 3 synthesizes a
pairwise comparison of the SMT solvers on our universe of proof obligations.

This comparison signals the results obtained when all available reasoners are
applied: only 31 proof obligations are unproved, down from 196 resulting from
the application of Atelier-B provers. It is also noteworthy that even though each
SMT solver is individually less effective than Atelier-B provers, applied alto-
gether, they prove all but 97 proof obligations. The important conclusion of our
experiments is that there is strong evidence that SMT solvers complement in an
effective and practical way the Atelier B provers, yielding significant improve-

31

alt-ergo cvc3 veriT veriT+E z3

alt-ergo 2017 2001 1880 1967 1911

cvc3 2001 2218 1953 2088 2031

veriT 1880 1953 2051 1958 1878

veriT+E 1967 2088 1958 2160 2067

z3 1911 2031 1878 1972 2094

Table 3. Number of proof obligations verified by SMT solver A also discharged by
solver B.

ments in the usability of the Rodin platform and its effectiveness to support the
development of Event-B models.

6 Conclusion

SMT solving is a formal verification technique successfully applied to various
domains including verification. SMT solvers do not have built-in support for
set-theoretic constructs found in Rodin sequents. We presented here a transla-
tion approach to tackle this issue. We evaluated experimentally the efficiency of
SMT solvers against proof obligations resulting from the translation of Rodin
sequents. In our sample of industrial and academic projects, the use of SMT
solvers on top of Atelier B provers reduces significantly the number of unverified
sequents. This plug-in is available through the integrated software updater of
Rodin (instructions at http://wiki.event-b.org/index.php/SMT_Plug-in).

The results are very encouraging and motivate us to progress further by
implementing and evaluating new translation approaches, such as representing
functions using arrays in the line of [8]. Elaborating strategies to apply different
reasoners, based on some characteristics of the sequents is also a promising line of
work. Another feature of some SMT solvers is that they can provide models when
a formula is satisfiable. In consequence, it would be possible, with additional
engineering effort, to use such models to report counter-examples in Rodin.

We believe that the approach presented in this paper could also be applied
successfully for other set-based formalisms such as: the B method, TLA+, VDM
and Z.

Cooperation of deduction tools is very error-prone, not only because it relies
on the correctness of many large and complex tools, but also because of the
translations. Certification of proofs in a centralized trusted proof manager would
be the answer to this problem. Preliminary works in this direction exist [15].

Acknowledgements: This paper is an abbreviated version of [12].

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

32

2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In First Int’l
Conference on Certified Programs and Proofs, CPP 2011, volume 7086 of Lecture
Notes in Computer Science, pages 135–150. Springer, 2011.

4. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, Feb. 2009.

5. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard Version 2.0, 2010.
6. T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: An Open,

Trustable and Efficient SMT-Solver. In Proc. Conference on Automated Deduc-
tion (CADE), volume 5663 of Lecture Notes in Computer Science, pages 151–156.
Springer, 2009.

7. J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna. RODIN
(Rigorous open Development Environment for Complex Systems). In Fifth Eu-
ropean Dependable Computing Conference: EDCC-5 supplementary volume, pages
23–26, 2005.

8. J.-F. Couchot, D. Déharbe, A. Giorgetti, and S. Ranise. Scalable Automated Prov-
ing and Debugging of Set-Based Specifications. Journal of the Brazilian Computer
Society, 9:17–36, 2003.

9. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan and J. Rehof, editors, Tools and Algorithms for Construction and Analysis
of Systems (TACAS), volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer, 2008.

10. D. Déharbe. Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In M. Frappier, G. Uwe, K. Sarfraz, R. Laleau, and S. Reeves, editors,
Proceedings 2nd Int’l Conf. Abstract State Machines, Alloy, B and Z, ABZ 2010,
volume 5977 of Lecture Notes in Computer Science, pages 217–230. Springer, 2010.

11. D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In
J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel, S. Reeves, and
E. Riccobene, editors, Proc 3rd Int. Conf. Abstract State Machines, Alloy, B, VDM,
and Z (ABZ 2012), volume 7316 of Lecture Notes in Computer Science, pages 194–
207. Springer, 2012.

12. D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. Integrating SMT solvers in
Rodin. Science of Computer Programming, 2014. Available online.

13. M. Konrad and L. Voisin. Translation from Set-Theory to Predicate Calculus.
Technical report, ETH Zurich, 2011.

14. D. Kröning, P. Rümmer, and G. Weissenbacher. A Proposal for a Theory of Finite
Sets, Lists, and Maps for the SMT-LIB Standard. In Informal proceedings, 7th
Int’l Workshop on Satisfiability Modulo Theories (SMT) at CADE 22, 2009.

15. M. Schmalz. The logic of Event-B, 2011. Technical report 698, ETH Zürich,
Information Security.

16. The Eclipse Foundation. Eclipse SDK, 2009.

33

Using Deduction Modulo in Set Theory ?

Pierre Halmagrand

Cedric/Cnam/Inria, Paris, France
Pierre.Halmagrand@inria.fr

Abstract. We present some improvements of Zenon Modulo and the
application of this tool to sets of problems coming from set theory.
Zenon Modulo is an extension of the tableau-based first order automated
theorem prover Zenon to deduction modulo. Deduction modulo is an ex-
tension of predicate calculus, which allows us to rewrite terms as well
as propositions, and which is well-suited for proof-search in axiomatic
theories, as it turns axioms into rewrite rules. The improvements dis-
cussed here consist in a better heuristic to automatically build rewrite
systems given a set of axioms, and some optimizations in the rewrit-
ing process used during the proof search. We also present some updated
results obtained on benchmarks provided by the TPTP library for set
theory categories. Finally, we discuss some recent work about the appli-
cation of our tool to the B method set theory, in particular the way we
treat equality and the comprehension scheme.

Keywords: Automated Theorem Proving, Tableaux, Deduction Mod-
ulo, Rewriting, Set Theory, B Method, Zenon Modulo.

1 Introduction

The development of large-scale industrial projects based on formal software is
constrained by the efficiency of verification tools that themselves rely on auto-
mated theorem provers to mechanize a maximal part of the formalization pro-
cess. Therefore, to allow a wider dissemination of these techniques, a particular
attention must be paid to the development of automated theorem prover. Since
many formal developments may be based on specific theories, like the widely
used B method [1] which relies on a particular typed set theory, we must pay
attention to reason within axiomatic theories. A solution to improve verification
tools is to combine different approaches in automated deduction and specialize
them for a specific theory, like SMT solvers.

The BWare project [17] aims to provide a generic platform relying on different
theorem provers (first order provers and SMT solvers) to verify proof obligations
coming from the development of industrial applications using the B method.

? This work is supported by the BWare project [17] (ANR-12-INSE-0010) funded by
the INS programme of the French National Research Agency (ANR).

34

As part of this project, the development of Zenon Modulo [10] is driven by its
application to set theory.

Our approach is to extend the tableau-based first order automated theorem
prover Zenon [6] to deduction modulo [11]. Deduction modulo is an extension of
predicate calculus, which allows to rewrite terms as well as propositions. This is
well suited for proof-search in axiomatic theories, as it turns axioms into rewrite
rules. For instance, we can express Zermelo set theory without any axiom [12],
and turn non-deterministic proof-search among axioms into computations, which
reduces the proof-search space. Moreover, Zenon Modulo, like Zenon, adopts a
certifying approach and produces proof certificates that can be checked by exter-
nal proof checkers. Since the proofs produced by Zenon Modulo should keep the
advantage of conciseness of deduction modulo, we do not want to record all the
computational steps of rewriting [9]. As a result, in order to verify such proofs,
we use Dedukti [4], a simple proof checker based on the λΠ-calculus modulo
which can deal with rewriting.

We also present an updated heuristic, used by Zenon Modulo to automatically
transform axioms into rewrite rules. The new heuristic captures more axioms
and guarantees to have a more meaningful rewrite system and impacts both
rewrite rules over terms and over propositions. We should notice here that this
heuristic has been developed to be used as a preprocessing tool that allows a
fully automatic use of Zenon Modulo on problems in the TPTP format. A second
option is to give manually the rewrite system to Zenon Modulo. This second
option is the one chosen for the B method set theory since there is a limited
number of axioms and definitions, and we can afford to design a customized
rewrite system.

To assess our approach, we apply this new heuristic to the SET and SEU
categories of the first-order problems of the TPTP library [16] which deal with
set theory, and compare results obtained by Zenon and Zenon Modulo with both
heuristics. In particular, we exhibit some examples of difficult problems that can
be proved by our tool using the new heuristic.

Finally, we discuss the application of Zenon Modulo to the B method set
theory [1]. We will especially focus on equality and the comprehension scheme
in first order logic.

This paper is organized as follows: in Sec. 2, we first introduce the basic no-
tions of deduction modulo and its application to Zenon Modulo; we then present
in Sec. 3 the new heuristic for Zenon Modulo; we expose in Sec. 4 the experimen-
tal results obtained on the benchmarks provided by the TPTP library; finally,
in Sec. 5, we discuss the ongoing work on the B set theory.

2 Zenon with Deduction Modulo

Zenon Modulo [10] is an extension of the tableau-based first order automated
theorem prover Zenon [6] to deduction modulo [11]. This extension is partially
inspired by the presentation of tableaux modulo in [5]. The proof-search rules

35

are applied with the usual tableau method: starting from the negation of the
goal, apply the rules in a top-down fashion to build a tree. When all branches
can be closed by applying a closure rule, the tree itself is said closed, and this
closed tree is a proof of the goal.

Deduction modulo [11] extends the predicate calculus by introducing a con-
gruence relation over propositions and the ability to perform conversion between
propositions that are equivalent modulo the congruence. Given a set of axioms,
the congruence is generated by the rewrite system coming from the transforma-
tion of axioms into rewrite rules. One of the major interests of deduction modulo
lies in reasoning modulo this congruence, since it reduces the search space by
removal of axioms from the context. For example, considering the following def-
inition of inclusion in set theory: ∀X,Y (X ⊆ Y ⇔ ∀x (x ∈ X ⇒ x ∈ Y))

The proof of A ⊆ A produced by Zenon has the following shape:

¬(A ⊆ A), ∀X,Y (X ⊆ Y ⇔ ∀x (x ∈ X ⇒ x ∈ Y))
γ∀inst∀Y (A ⊆ Y ⇔ ∀x (x ∈ A⇒ x ∈ Y))

γ∀inst
A ⊆ A⇔ ∀x (x ∈ A⇒ x ∈ A)

β⇔¬∀x (x ∈ A⇒ x ∈ A)
δ¬∀¬(τ ∈ A⇒ τ ∈ A)

α¬⇒
τ ∈ A, ¬(τ ∈ A) ��

A ⊆ A ��

where τ = εx.¬(x ∈ A⇒ x ∈ A) is a Hilbert epsilon-term formed with a variable
x and the formula ¬(x ∈ A⇒ x ∈ A), which is the formula existentially quanti-
fied over. The Hilbert epsilon-term denotes the term that satisfies the formula,
seen as a predicate on x, if it exists [18]. It can be seen as a Skolem term that
records the formula itself.

Deduction modulo replaces the axiom by the rewrite rule, where X and Y
are variables: X ⊆ Y −→ ∀x (x ∈ X ⇒ x ∈ Y)

The proof produced by Zenon Modulo is then:

¬(A ⊆ A)
δ¬∀, A ⊆ A −→ ∀x (x ∈ A⇒ x ∈ A)¬(τ ∈ A⇒ τ ∈ A)
α¬⇒

τ ∈ A, ¬(τ ∈ A) ��

where τ = εx.¬(x ∈ A⇒ x ∈ A).

It can be seen that computations are interleaved with the deduction rules. It
can be noticed that the proof is much simpler than the one produced by Zenon.
In addition to simplicity, deduction modulo also allows for unbounded proof size
reduction [7].

36

3 Building Theories Modulo

Dealing with large sets of axioms is quite difficult when building theories modulo.
In the TPTP library [16], the first order problems category has almost 7,000,000
axioms and the subset of set theory problems has more than 170,000 axioms.
Since we cannot manually build rewrite systems for such large sets of axioms,
we develop a heuristic to automatically turn axioms into rewrite rules.

The heuristic described below is based on the following guidelines. We never
introduce a free variable that was not bound at the head of the formula by a
universal quantifier. For rewrite rules over terms, we want to capture equality
properties of terms, except axioms expressing commutativity for obvious termi-
nation reasons. We also excluded to rewrite a variable to a more complicated
term for the same reason. For rewrite rules over propositions, we select axioms ex-
pressing equivalence properties of propositions. The left hand side of the rewrite
rule must be an atom, or its negation, as required by deduction modulo [11],
and the right hand side may be any proposition. We also handle cases where
the atomic proposition is an equality, in this case we require that at least one
side of the equality is a function symbol. Moreover, axioms with just an atomic
proposition, or its negation, are turned to rewrite to true, and false respectively.
Finally, conjunctions of propositions that satisfy one of the previous conditions,
are separated into multiple rewrite rules, accordingly to the logical equivalence
of ∀x̄ ϕ ∧ ψ and ∀x̄ ϕ ∧ ∀x̄ ψ, where ϕ and ψ are two arbitrary formulas.

In the following, t1 and t2 are terms, P is an atomic formula that is not an
equation, and ϕ is an arbitrary formula. FV(ϕ) refers to the set of free variables
of ϕ. Here are the shapes of axioms that are handled by our heuristic and the
corresponding rewrite rule that is generated:

• ∀x̄ t1 = t2
� If FV(t2) ⊆ FV(t1) and t1 is not a variable, then the term rewrite rule
t1 −→ t2 is generated;
� Otherwise, if FV(t1) ⊆ FV(t2) and t2 is not a variable, then the term
rewrite rule t2 −→ t1 is generated;
� In addition, all axioms expressing the commutativity of a given symbol
are excluded.

• ∀x̄ P (resp. ∀x̄ ¬P)
� The proposition rewrite rule P −→ > is generated (resp. P −→ ⊥).

• ∀x̄ P ⇔ ϕ (resp. ∀x̄ ¬P ⇔ ϕ)
� If FV(ϕ) ⊆ FV(P), then the proposition rewrite rule P −→ ϕ is gener-
ated (resp. P −→ ¬ϕ);
� Otherwise, if ϕ is a literal and FV(P) ⊆ FV(ϕ), then we apply the
heuristic to the formula ∀x̄ ϕ⇔ P (resp. ∀x̄ ϕ⇔ ¬P).

37

• ∀x̄ (t1 = t2)⇔ ϕ (resp. ∀x̄ ¬(t1 = t2)⇔ ϕ)
� If FV(ϕ) ⊆ FV(t1) ∪ FV(t2) and at least one of the two terms t1 and
t2 is not a variable, then the proposition rewrite rule (t1 = t2) −→ ϕ is
generated (resp. (t1 = t2) −→ ¬ϕ).

The main difference between this new heuristic and the previous one pre-
sented in [10] is the last item of the list above. With this new rule, we can trans-
form into rewrite rules axioms which express an equivalence between equality
of two terms and a proposition. An example of a proof using such rewrite rule
is given in Sec. 4. In addition, we improve the generation of rewrite rules over
terms in order to exclude to rewrite variables, and we deal with conjunctions of
propositions that satisfy one the conditions listed above.

4 Experimental Results

4.1 TPTP Benchmarks

The TPTP library (v6.0.0) provides a large set of standard benchmark examples
for automated theorem proving systems [16]. To assess our approach, we perform
experiments over all the first order problems coming from the TPTP library and
dealing with set theory. This leads to select the SET and SEU categories that
have respectively 462 and 900 problems. We compare Zenon, the old version of
Zenon Modulo and the new version of Zenon Modulo which uses the heuristic
described in Sec. 3. This experiment was done on an Intel Core i7-4770 3.40GHz
computer, with a memory limit of 1GB and a timeout of 300s.

The results are summarized in Tab. 1. This table has three columns: the first
one provides the number of problems proved by Zenon for each category, while
the other two show the results for the old and new versions of Zenon Modulo.
In addition, for both old and new versions of Zenon Modulo, we provide some
detailed results with profit and loss between provers.

From the results of Tab. 1, we observe that the new version of Zenon Mod-
ulo proves more problems than Zenon and the old version of Zenon Modulo for
both SET and SEU categories. The total profit of 5 problems in SET category
(resulting from the gain of 12 problems and the loss of 7) may seem low, re-
garding to the difference of 73 problems between Zenon and the old version of
Zenon Modulo, but we have gained some very difficult problems, as shown below.
The improvement is more significant than for the SEU category. We notice a net
profit of 8 problems, coming from a gain of 26 problems and a loss of 18. We
also show an example from the SEU category below.

The verification by Dedukti of proofs produced by Zenon Modulo is almost
total. Over the 227 proofs in SET category, 224 are correctly verified. The three
missing proofs are due to termination issues of the translation of the proof from
Zenon Modulo to Dedukti by the backend of Zenon Modulo. In SEU category, all
the 110 proofs are declared well typed by Dedukti.

38

TPTP
Category

Zenon Zenon Modulo (Old) Zenon Modulo (New Version)

Total Total vs. Zenon Total vs. Zenon vs. Old
SET

462 prob.
149 222

+86
-13

227
+91
-13

+12
-7

SEU
900 prob.

96 102
+14
-8

110
+32
-18

+26
-18

Table 1. Experimental Results over the TPTP Library

4.2 Analysis of Two Proofs From Set Theory

The TPTP library provides a ranking system to evaluate problems. This note,
between 0 and 1, expresses the percentage of automated theorem provers that
are not able to prove the problem. A note of 0 means that the problem is trivial
(every prover solves it), and a note of 1 means that all provers fail.

According to the TPTP ranking, Zenon Modulo is able to prove some quite
difficult problems. The hardest problem is SET817+4, with a ranking of 0.97
in TPTP v6.0.0 (solved only by Muscadet [15]), and which neither Zenon or
the previous version of Zenon Modulo [10] was able to prove. It states that
the intersection of all elements of a non-empty set of ordinal numbers is an
ordinal. Among the 8 axioms needed by Zenon Modulo to solve this problem, 7
are transformed into rewrite rules by our heuristic. The proof of this problem is
too big to be displayed here.

An other example coming from the set theory, and that bodes well for appli-
cation to the B method set theory, is the problem SEU194+1. This problem, with
a ranking of 0.70, and which neither Zenon or the previous version of Zenon Mod-
ulo [10] was able to prove, states that for any set s, if p is a relation, then the
domain of the restriction of p to s is equal to the intersection of the domain of
p and the set s. Among the twenty eight axioms provided with the conjecture,
Zenon Modulo needs only two axioms to solve it, of which one is turned into a
rewrite rule. In the following, s, t and u are sets, p is a relation, a is an element
of a set, rel is a predicate for relations, dom a function that returns the domain
of a relation, and rest a function that returns the restriction of a relation.

• Conjecture:
∀s, p (rel(p)⇒ dom(rest(p, s)) = dom(p) ∩ s)

• Axiom:
∀a, s, p (rel(p)⇒ (a ∈ dom(rest(p, s))⇔ (a ∈ s) ∧ (a ∈ dom(p))))

• Rewrite rule:
u = s ∩ t −→ ∀a (a ∈ u⇔ ((a ∈ s) ∧ (a ∈ t)))

Zenon Modulo produces the proof of Fig. 1, presented in a format combining
deduction steps in solid line and rewriting steps in dashed line. In addition, we
omit some unnecessary formulas resulting from the application of β⇔ rules to
lighten the presentation.

39

¬(∀s, p (rel(p)⇒ dom(rest(p, s)) = dom(p) ∩ s)),
∀a, s, p (rel(p)⇒ (a ∈ dom(rest(p, s))⇔ a ∈ s ∧ a ∈ dom(p)))

δ¬∀ × 2¬(rel(τ2)⇒ dom(rest(τ2, τ1)) = dom(τ2) ∩ τ1)
α¬⇒

rel(τ2), ¬(dom(rest(τ2, τ1)) = dom(τ2) ∩ τ1)
rewrite¬(∀a (a ∈ dom(rest(τ2, τ1))⇔ a ∈ dom(τ2) ∧ a ∈ τ1))
δ¬∀¬(τ3 ∈ dom(rest(τ2, τ1))⇔ τ3 ∈ dom(τ2) ∧ τ3 ∈ τ1)
β¬⇔

Π1 τ3 ∈ dom(rest(τ2, τ1)), ¬(τ3 ∈ dom(τ2) ∧ τ3 ∈ τ1)
β¬∧

Π2 Π3

Π1

¬(τ3 ∈ dom(rest(τ2, τ1))), τ3 ∈ dom(τ2) ∧ τ3 ∈ τ1
α∧

τ3 ∈ dom(τ2), τ3 ∈ τ1
γ∀ × 3

rel(τ2)⇒ (τ3 ∈ dom(rest(τ2, τ1))⇔ τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2))
β⇒¬(rel(τ2)) ��

τ3 ∈ dom(rest(τ2, τ1))⇔ τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2)
β⇔¬(τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2))

β¬∧¬(τ3 ∈ τ1) ��
¬(τ3 ∈ dom(τ2)) ��

τ3 ∈ dom(rest(τ2, τ1)) ��

Π2

¬(τ3 ∈ dom(τ2))
γ∀ × 3

rel(τ2)⇒ (τ3 ∈ dom(rest(τ2, τ1))⇔ τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2))
β⇒¬(rel(τ2)) ��

τ3 ∈ dom(rest(τ2, τ1))⇔ τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2)
β⇔¬(τ3 ∈ dom(rest(τ2, τ1))) ��

τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2)
α∧

τ3 ∈ τ1, τ3 ∈ dom(τ2) ��

Π3

¬(τ3 ∈ τ1)
γ∀ × 3

rel(τ2)⇒ (τ3 ∈ dom(rest(τ2, τ1))⇔ τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2))
β⇒¬(rel(τ2)) ��

τ3 ∈ dom(rest(τ2, τ1))⇔ τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2)
β⇔¬(τ3 ∈ dom(rest(τ2, τ1))) ��

τ3 ∈ τ1 ∧ τ3 ∈ dom(τ2)
α∧

τ3 ∈ τ1, τ3 ∈ dom(τ2) ��

where :
τ1 = ε(s).¬(rel(p)⇒ dom(rest(p, s)) = dom(p) ∩ s)
τ2 = ε(p).¬(rel(p)⇒ dom(rest(p, τ1)) = dom(p) ∩ τ1)
τ3 = ε(a).¬(a ∈ dom(rest(τ2, τ1)⇔ a ∈ dom(τ2) ∧ a ∈ τ1))

Fig. 1. Proof of Problem SEU194+1

40

5 Application to the B Method Set Theory

The BWare project [17] aims to provide a generic platform based on Why3 [3]
relying on different deduction tools, such as Alt-Ergo [2], iProver Modulo [8],
Super Zenon [13] and Zenon Modulo [10], in order to verify proof obligations
coming from the development of industrial applications using the B method.
Since B proof obligations are translated into the input language of Why3 [14],
the B method set theory has been axiomatized in the WhyML language.

Building the B set theory modulo consists mainly in turning six axioms and
many derived constructs into rewrite rules. The first two axioms, dealing with
membership of an ordered pair in a cartesian product and the membership of a
set in the power-set, can be easily turned into rewrite rules. The third axiom,
defining the comprehension scheme, is removed due to its high-order definition,
we present below how to deal with derived constructs defined with the compre-
hension scheme. The fourth axiom is the extensionality axiom and states that
two sets s and t are equal if being a member of s is equivalent to be a member
of t. This is not the only property of the equality symbol, as we will see below.
Finally, the last two axioms, the axiom of choice and the existence of an infinite
set are easy to deal with.

Following the notations of the B-Book, s and t are sets, E and F some
expressions, x a variable, P(t) the power-set of the set t and BIG the constant
infinite set. Here is the set of rewrite rules generated from the axioms:

(E,F) ∈ (s× t) −→ (E ∈ s ∧ F ∈ t) (pair)
s ∈ P(t) −→ ∀x (x ∈ s⇒ x ∈ t) (power)
s = t −→ ∀x (x ∈ s⇔ x ∈ t) (extensionality)

choice(s) ∈ s −→ ∃x (x ∈ s) (choice)
infinite(BIG) −→ > (infinite)

Fig. 2. Expression of the Axioms of the B Set Theory as a Rewrite System

5.1 Removal of the Comprehension Scheme

In the B-book, the comprehension scheme is used to define non-primitive sym-
bols. For instance, the union of two sets is defined as follows:

s ∪ t := {a | a ∈ u ∧ (a ∈ s ∨ a ∈ t)}

where u is a set, and s and t and two subsets of u.
Since we have dismissed the comprehension scheme, we expand the above

definition by directly defining membership to the union, thereby removing the
use of comprehension:

41

x ∈ s ∪ t −→ x ∈ s ∨ x ∈ t (union)

This rewrite rule, combined with extensionality, is equivalent to the previous
definition of the union. Handling the other non-primitive symbols, like intersec-
tion of sets, inverse of a relation or also the identity relation, in this systematic
way, allows a total removal of the comprehension scheme used to define derived
constructs in the B-Book. Unfortunately, this method do not permit us to man-
age user-defined sets using the comprehension scheme for the moment.

Here is, as an example, the proof produced by Zenon Modulo for the commu-
tativity of union:

¬∀A,B (A ∪B = B ∪A)
δ¬∀¬∀B (τ1 ∪B = B ∪ τ1)
δ¬∀τ1 ∪ τ2 = τ2 ∪ τ1 extensionality¬∀X (X ∈ τ1 ∪ τ2 ⇔ X ∈ τ2 ∪ τ1)

δ¬∀¬(τ3 ∈ τ1 ∪ τ2 ⇔ τ3 ∈ τ2 ∪ τ1)
β¬⇔

Π1 Π2

where Π1 and Π2 are the following subtrees:

Π1

¬(τ3 ∈ τ1 ∪ τ2), τ3 ∈ τ2 ∪ τ1
union× 2¬(τ3 ∈ τ1 ∨ τ3 ∈ τ2), τ3 ∈ τ2 ∨ τ3 ∈ τ1 α¬∨¬(τ3 ∈ τ1), ¬(τ3 ∈ τ2)

β∨τ3 ∈ τ2 ��
τ3 ∈ τ1 ��

Π2

τ3 ∈ τ1 ∪ τ2, ¬(τ3 ∈ τ2 ∪ τ1)
union× 2

τ3 ∈ τ1 ∨ τ3 ∈ τ2, ¬(τ3 ∈ τ2 ∨ τ3 ∈ τ1)
α¬∨¬(τ3 ∈ τ2), ¬(τ3 ∈ τ1)

β∨τ3 ∈ τ1 ��
τ3 ∈ τ2 ��

and where:

τ1 = εA.¬(A ∪B = B ∪A)
τ2 = εB.¬(τ1 ∪B = B ∪ τ1)
τ3 = εX.¬(X ∈ τ1 ∪ τ2 ⇔ X ∈ τ2 ∪ τ1)

We notice that the subtrees Π1 and Π2 are symmetric, the proof of the
commutativity of union resulting of the commutativity of the disjunction.

42

5.2 Dealing with Equality

The set theory of the B-book relies heavily on a primitive notion of equality, in-
troduced before axioms for the set theory [1]. The main property of the equality
is substitutivity (i.e. an expression can be replaced by another one in a propo-
sition provided they are equal). Starting from substitutivity and reflexivity of
equality, other properties like symmetry and transitivity can be derived. Zenon
already have rules that deal with this equational reasoning [6].

The second property of equality, introduced much later, and that has to deal
directly with set theory is extensionality as shown in Fig. 2. Turning the axiom
of extensionality into a rewrite rule allows Zenon Modulo to extend the equality
symbol into membership equivalence at each step of the proof-search.

Choosing between equational reasoning and the extensionality properties of
equality during proof-search may be decisive to find a proof. There are different
solutions to deal with this problem. A first idea is to try both equational reason-
ing and extensionality every time we meet an equality symbol, but this solution
may not be efficient since we duplicate the work for each equality symbol. The
solution we are working on is to implement a heuristic into Zenon Modulo that
decides to apply the extensionality rewrite rule, or to use the equational rea-
soning of Zenon, based on the shape of terms. For instance, if both sides of the
equality are variables, we do not apply the extensionality rewrite rule, otherwise
we use it.

6 Conclusion

We have presented some improvements of Zenon Modulo, in particular a new
heuristic to transform axioms into rewrite rules over terms and propositions.
This heuristic is used as a preprocessing tool to automatically build theories
modulo given sets of axioms. We have also presented results obtained on set
theory problems, coming from the benchmarks provided by the TPTP library.
This experiment was performed using the new heuristic. In particular, we have
shown that this new version proves some new difficult problems according to the
TPTP ranking.

We have also discussed some recent work about the application of our tool
to the B method set theory. Since we want to use Zenon Modulo to verify proof
obligations coming from the development of industrial applications using the B
method, we have to build a B set theory modulo. We have described a method
to remove the comprehension scheme used to define non-primitive symbols like
union of sets. Finally, we have presented some ideas to handle equality in the B
set theory.

As future work, we first aim to implement a heuristic into Zenon Modulo
that handles the equality of B set theory. In particular, this heuristic should
decide whether to apply the extensionality rewrite rule, or to use the equational
reasoning of Zenon. To assess our work, we will first try to prove a large part of
derived lemmas coming from the B-Book. Finally, we will apply Zenon Modulo to
the set of proof obligations provided by the benchmarks of the BWare project.

43

Acknowledgement. Many thanks to O. Hermant, and D. Doligez for their detailed
comments on this paper, and to the Deducteam Inria research team for the many
interactions.

References

1. J.-R. Abrial. The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0521496195.

2. F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing Polymor-
phism in SMT solvers. In C. Barrett and L. de Moura, editors, SMT 2008: 6th
International Workshop on Satisfiability Modulo, volume 367 of ACM International
Conference Proceedings Series, pages 1–5, 2008.

3. F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your
herd of provers. In Boogie 2011: First International Workshop on Intermediate
Verification Languages, pages 53–64, Wrocław, Poland, August 2011.

4. M. Boespflug, Q. Carbonneaux, and O. Hermant. The λΠ-Calculus Modulo as a
Universal Proof Language. In Proof Exchange for Theorem Proving (PxTP), pages
28–43, Manchester (UK), June 2012.

5. R. Bonichon. TaMeD: A Tableau Method for Deduction Modulo. In International
Joint Conference on Automated Reasoning (IJCAR), volume 3097 of LNCS, pages
445–459, Cork (Ireland), July 2004. Springer.

6. R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An Extensible Automated
Theorem Prover Producing Checkable Proofs. In Logic for Programming Artificial
Intelligence and Reasoning (LPAR), volume 4790 of LNCS/LNAI, pages 151–165,
Yerevan (Armenia), Oct. 2007. Springer.

7. G. Burel. Efficiently Simulating Higher-Order Arithmetic by a First-Order Theory
Modulo. Logical Methods in Computer Science (LMCS), 7(1):1–31, Mar. 2011.

8. G. Burel. Experimenting with Deduction Modulo. In Conference on Automated De-
duction (CADE), volume 6803 of LNCS/LNAI, pages 162–176, Wrocław (Poland),
July 2011. Springer.

9. D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, and O. Hermant. Proof Cer-
tification in Zenon Modulo: When Achilles Uses Deduction Modulo to Outrun the
Tortoise with Shorter Steps. In K. McMillan, A. Middeldorp, and A. Voronkov,
editors, International Workshop on the Implementation of Logics (IWIL), Stellen-
bosch (South Africa), Dec. 2013. EasyChair.

10. D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, and O. Hermant. Zenon Mod-
ulo: When Achilles Outruns the Tortoise using Deduction Modulo. In K. McMillan,
A. Middeldorp, and A. Voronkov, editors, Logic for Programming Artificial Intel-
ligence and Reasoning (LPAR), volume 8312 of LNCS/ARCoSS, pages 274–290,
Stellenbosch (South Africa), Dec. 2013. Springer.

11. G. Dowek, T. Hardin, and C. Kirchner. Theorem Proving Modulo. Journal of
Automated Reasoning (JAR), 31(1):33–72, Sept. 2003.

12. G. Dowek and A. Miquel. Cut Elimination for Zermelo Set Theory. In Archive for
Mathematical Logic. Springer. Submitted.

13. M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois. Tableaux Modulo Theories
using Superdeduction: An Application to the Verification of B Proof Rules with
the Zenon Automated Theorem Prover. In International Joint Conference on Au-
tomated Reasoning (IJCAR), volume 7364 of LNCS, pages 332–338, Manchester
(UK), June 2012. Springer.

44

14. D. Mentré, C. Marché, J.-C. Filliâtre, and M. Asuka. Discharging proof obligations
from Atelier B using multiple automated provers. In S. Reeves and E. Riccobene,
editors, ABZ’2012 - 3rd International Conference on Abstract State Machines,
Alloy, B and Z, volume 7316 of Lecture Notes in Computer Science, pages 238–
251, Pisa, Italy, June 2012. Springer. http://hal.inria.fr/hal-00681781/en/.

15. D. Pastre. Muscadet 2.3: A knowledge-based theorem prover based on natural
deduction. In R. Goré, A. Leitsch, and T. Nipkow, editors, Automated Reasoning,
volume 2083 of Lecture Notes in Computer Science, pages 685–689. Springer Berlin
Heidelberg, 2001.

16. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning (JAR), 43(4):337–362,
Dec. 2009.

17. The BWare Project, 2012. http://bware.lri.fr/.
18. C.-P. Wirth. Hilbert’s epsilon as an operator of indefinite committed choice. Jour-

nal of Applied Logic, 6(3):287 – 317, 2008.

45

Turning Failure into Proof:
Evaluating the ProB Disprover

Sebastian Krings, Jens Bendisposto and Michael Leuschel

Institut für Informatik, Universität Düsseldorf??

Universitätsstr. 1, D-40225 Düsseldorf
{krings,bendisposto,leuschel}@cs.uni-duesseldorf.de

Abstract. The ProB disprover uses constraint solving to try and find
counter examples to proof obligations. As the ProB kernel is now ca-
pable of determining whether a search was exhaustive, one can also use
the disprover as a prover. In this paper, we compare the ProB Prover
with the standard automatic provers for B and Event-B, such as ml, pp
and the Rodin SMT plug-in. We demonstrate that ProB is able to deal
with classes of proof obligations that are not easily discharged by other
provers. As benchmarks we use medium sized specifications such as solu-
tions to the ABZ 2014 case study, a CAN bus specification and a railway
system.

1 Introduction and Motivation

Both the B-method and its successor Event-B [1] are state-based formal methods
rooted in set theory. They are used for the formal development of software and
systems that are correct by construction. This usually involves formal proofs
of different properties of the specification. The proof obligations often include
set theoretic theorems and claims. Many provers such as “ml” of Atelier-B are
able to discharge certain proof obligations automatically. In former work [13]
we already described a disprover based on using ProB’s constraint solver to
automatically find counter-examples for given proof obligations and thus saving
the user from spending time in a futile interactive proof attempt.

We made the observation that in some cases, namely if we never encounter in-
finite sets nor deferred sets1 whose cardinality remains unbounded, the absence
of a counter example is actually a proof. In [13] we thus suggested as future
work to implement an analysis that checks if the absence of a counter example
is a valid proof. This work has been finalized in the recent months: ProB now
keeps track of infinite set enumeration, in particular the scope in which an in-
finite enumeration has occurred and whether a solution has been found or not.
This enables our technique to detect if the search for a counter-example was
exhaustive, i.e., we can now use ProB as a prover.

?? Part of this research has been sponsored by the EU funded FP7 project 287563
(ADVANCE).

1 Deferred sets are sets which are not given upfront by enumerating their elements.
They are unbound sets which can become bounded by further constraints.

46

In [13] we have also identified the need to empirically evaluate the disprover.
In this paper we will focus on this research goal: the empirical evaluation of
our constraint-based approach to checking proof obligations, in particular when
compared to the existing provers available for B.

2 Technique

When working on a proof obligation, Rodin keeps track of two sets of hypotheses:
the set of all hypothesis available to proof the target goal and a user-selected
subset. The idea behind this is to be able to shrink the search space of automatic
provers by omitting hypothesis that should not be used in a proof attempt. In
the case of the ProB prover we could, for instance, get rid of hypotheses that
are irrelevant for the proof but contain variables over infinite domains, deferred
sets or complicated constraints. This approach can not lead to false positives
because limiting the number of available hypothesis can not render a formerly
unprovable sequent provable.

However, disproving while omitting hypotheses can lead to false negatives if
the hypotheses are too weak for a proof. In order not to confuse the user with
invalid counter-examples, we only try to disprove a sequent using all hypotheses.

Figure 1 outlines how we proceed:

1. We try to solve the predicate H1 ∧ ... ∧ Hm ∧ ¬G, i.e. the negated goal
together with all available hypotheses. If we find a solution, we report a
counter-example to Rodin and show it inside the proof tree as shown in
Figure 2. If a contradiction is detected, either by analyzing the predicate or
by enumerating exhaustively without finding a solution, the initial sequent
is proven, because no counter-example exists.

2. If the constraint solver is unable to prove or disprove the predicate, we reduce
the number of hypotheses to the user-selected hypotheses. After reducing to
a subset of the hypotheses we will not report counter examples to avoid false
negatives as discussed:
– A contradiction detected with the reduced set of hypotheses is still a

valid proof as reducing the number of hypotheses might introduce further
counter-examples but not remove them.

– If we find a solution, we report a possible counter-example. However, we
do not prevent a following proof effort.

– Otherwise we return without a result.

The ProB constraint solver supports sets in different ways. First of all, all set
theoretic features of the B language are available to formulate constraints. This
includes, among others, subset, strict subset, membership, union and intersection
as well as cardinality of sets.

The solver is based on constraint-propagation and resorts to enumeration
if no further propagation is possible. While doing so, the solver tracks where
and why the elements of a set have to be enumerated. It is able to distinguish

47

PROOF

All
Hypothesis

not(Goal)
1. ProB

Constraint
Solver

Counterexample
solution found

No solution found &
enumeration
exhaustive

No solution found, but
not exhaustive

Selected
Hypothesis

2. ProB
Constraint

Solver

No solution found &
enumeration
exhaustive

DISPROOF: Goal cannot be proven

No solution found, but
not exhaustive

Solution found

UNKNOWN

Fig. 1. Disproving Algorithm

Fig. 2. Counter-Example inside the Rodin Proof Tree

between safe and unsafe enumerations, i.e. if all possible values of a variable
have to be tried out or if a single solution is sufficient. This is done by observing
the context2 in which an enumeration occurs. Exhaustive enumeration can then
be detected individually for each variable and later be transferred to the whole
constraint if possible. Let us look at a few examples, where we suppose all free
variables to be existentially quantified:

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 6= 0) :
ProB finds two solutions (i = 1024 and i = 2048) and no infinite enumera-
tion has occurred as ProB has narrowed down the interval of i to 3..2048 be-
fore enumeration has started. As such, we can conclude that G = i mod 2 6= 0
is not a logical consequence of the hypotheses H1 = i ∈ {1, 2, 1024, 2048}
and H2 = i > 2. The same solutions could be found by a CLP(FD) query.3

– i > 20 ∧ ¬(i mod 2 6= 0):
ProB finds a solution (i = 22), but infinite enumeration has occurred in

2 This includes quantification, negation and arbitrarily nested combinations of them.
3 SICStus Prolog: list to fdset([1,2,1024,2048],FDSet), I in set FDSet, I

#>2, I mod 2 #\= 0 #<=> 0, labeling([],[I]).

48

the sense that the possible values of i lie in the interval 22..∞. However,
in this context this is not an issue, as a solution has been found. As such,
we can conclude that i mod 2 6= 0 is not a logical consequence of i > 20.
This time there is no CLP(FD) query that returns a solution. As there is
no finite domain attached to i, labeling can not be performed. In contrast,
ProB is able to (partially) enumerate the infinite domain of i in order to
find a solution.

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 = 0) :
ProB finds no solution and no infinite enumeration has occurred. As such,
we have proven that i mod 2 = 0 follows logically from i ∈ {1, 2, 1024, 2048}∧
i > 2. A CLP(FD) query also confirms, that there is no solution.

– i > 20 ∧ ¬(i mod 2 = 0 ∨ i mod 1001 6= 800):
Here ProB finds no solution, but an “enumeration warning” is produced.
Indeed, the constraint solver has narrowed down the possible solutions for i
to the interval 801..∞, but with the default search settings no solution has
been found. Here, we cannot conclude that i mod 2 = 0∨ i mod 1001 6= 800
is a logical consequence of i > 20. Indeed, i = 1801 is a counter example. 4

Again, CLP(FD) is unable to solve the query due to the infinite domain of
i.

As mentioned in the introduction, we will not go into further technical details
in this paper.

3 Empirical Evaluation and Comparison

For our empirical evaluation we compare ProB to several other provers available
for the Rodin platform [2], i.e., Rodin’s automatic tactic and the SMT plug-in
[9,10]. Our comparison shows the benefit gained from using ProB as a prover.
Each additional obligation that is discharged in this comparison actually saves
time and money.

3.1 Experimental Setup

– The automatic tactic applies a number of rewriting rules and decision pro-
cedures to the proof tree. For instance, a decision procedure checks if the
goal is listed in the set of hypotheses and thus discharged. It also uses the
PP and ML provers from AtelierB. The automatic tactic is applied until a
fixpoint is reached.

– The SMT plug-in [9,10] applies two different SMT solvers (veriT [8] and
CVC3 [5]) to the original goal, after some pre-processing.

– The disprover tactic applies three trivial decision procedures (check if goal
is >, check if the hypotheses contain ⊥ and if the goal appears in the list of
hypotheses). Afterwards the disprover is applied to the goal.

4 Which ProB can find if you enlarge the default search space, e.g., by adding i <
10000 as additional constraint.

49

For our experiments, we have used Rodin 2.8, version 2.0.1 of the Atelier B
provers plugin and version 1.1.0.e126305 of the SMT Solvers Plugin, with the
bundled version 2.4.1 of CVC3 and the bundled development version of veriT.
We have used a timeout of 1 second for each SMT solver, run in succession.
ProB was used in version 1.3.7-beta10, connected through the disprover plugin
version 2.4.4.201403152244. Again, a timeout of 1 second was used for each
constraint solving attempt with a maximum of two attempts per proof obligation
(see Figure 1). Both the CLP(FD) and the CHR-based solvers of ProB were
activated. All benchmarks were run on a MacBook Pro featuring a 2,6 GHz
Intel Core i7 CPU and 8 GB 1600 MHz DDR3 memory. The CPU includes 4
cores, yet we ran at most two proof attempts at once. We used a plugin5 for
the Rodin platform that applies the user- or pre-defined proof tactics to selected
proof obligations.

As models for our benchmarks we used the following models:

– Answers to the ABZ-2014 case study [7]. The case study models a landing
gear system. Beside our own version [12], we also used the three models by
Su and Abrial [17], a model by André, Attiogbé and Lanoix [3] as well as a
model by Mammar and Laleau [14].

– A model of the Stuttgart 21 Railway station interlocking by Wiegard, derived
from the interlocking model in chapter 17 of [1] with added timing and
performance modeling.

– A model of a controller area network (CAN) bus. A CAN Bus is used in
vehicles for direct communication between components without a central
processor. The model was developed by Colley.

– A formal development of a graph coloring algorithm by Andriamiarina and
Méry. The graphs to be colored are finite, but unbounded and not fixed in
the model.

– A model of a pacemaker by Neeraj Kumar Singh [15].
– A model formalizing a number of set theoretical laws; generated for regres-

sion tests.

3.2 Results and Analysis

The results of the benchmarks are shown in Table 1 and Figures 4 and 5. Table 1
shows the total number of proof obligations discharged, as well as a column
showing the percentage of proof obligations discharged using ML/PP together
with SMT and in the last column the percentage discharged by using these two
proof tactics together with the ProB disprover. Each Venn diagram shows how
many proof obligations are discharged by which prover. Except for the graph
coloring algorithm and the set laws example ProB performs surprisingly well.

The graph coloring algorithm uses unbounded sets, that means that some of
the proof obligations cannot be proven using constraint solving and enumeration.

5 The source code of the plugin can be found at https://github.com/wysiib/

ProverEvaluationPlugin. An update site for installation inside Rodin is available
at http://nightly.cobra.cs.uni-duesseldorf.de/rodin_provereval/.

50

Table 1. Benchmark results: proof obligations discharged for various developments

Model # POs ML/PP SMT ProB % excl. ProB % incl. ProB

Landing Gear System 1, Su, et. al. 2328 2171 2312 2275 99.57 99.79
Landing Gear System 2, Su, et. al. 1188 845 1140 1165 97.22 99.49
Landing Gear System 3, Su, et. al. 341 201 187 251 74.78 85.63
CAN Bus, Colley 542 501 490 320 95.02 95.2
Graph Coloring, Andriamiarina, et. al. 254 226 116 19 96.06 96.06
Landing Gear System, Hansen, et. al. 74 72 63 74 100 100
Landing Gear System, Mammar, et. al. 433 347 385 334 95.15 98.15
Landing Gear System, Andre, et. al. 619 466 400 459 79.81 90.63
Pacemaker, Neeraj Kumar Singh 370 360 358 351 98.38 100
Stuttgart 21 interlocking, Wiegard 202 57 94 184 55.45 93.56
Set laws, Leuschel 67 67 67 62 100 100

ProB is only able to prove some very trivial invariants, such as ∀n ·n ∈ S ⇔ n ∈
dom(R) for the initialization S := ∅ || R := ∅. The other unfavorable case, the
set laws, is very similar. The model contains five invariants that contain infinite
sets and cannot be proven using ProB.

As can be seen in the last two columns of Table 1, ProB improves the
results of automatic proving in all other developments. In some cases, such as
the cases shown in Figure 5(b), 4(c) and 4(e) the improvement is rather big.
The reason for the big improvement is that these models only use enumerated
sets and integers. In these cases ProB can produce elaborate case distinctions,
combined with constraint solving to narrow down the search space. This type of
proof is not supported by the classical provers ML and PP. Generally, the proof
obligations that pose problems to the ProB disprover are well-definedness proof
obligations.

It is also interesting to note that, on their own, the ML and PP provers do
not fare quite so well as in Table 1: they require specific pre-processing to be
effective. In Table 2 are the results for two models without any pre-processing
(except for collecting hypotheses using the lasso tool):

Table 2. Results without pre-processing by Rodin

Model # POs Provers SMT ProB
ML PP ML/PP

Landing Gear System, Mammar et al 433 284 127 284 385 341
Landing Gear System, Andre et al 619 560 81 567 400 511
Pacemaker, Neeraj Kumar Singh 370 344 187 352 328 350

As can be seen, for the first model ML on its own discharges just 284 (45.9
%) proof obligations. PP discharges just 127 (20.5 %) of the proof obligations.
The SMT solver also benefits considerably from pre-processing: without it, it
discharges “just” 385 (62.2 %) of the proof obligations. The third model shows

51

Fig. 3. Counter-Example for proof obligation of Landing Gear System by Andre et al.

quite similar declines if pre-processing is omitted. However, the second model
shows the opposite behavior: without pre-processing, more proof obligations can
be discharged. This is due to the timeouts leaving less time for the actual prover,
if we include a pre-processing phase. In future, we want to examine whether
better pre-processing can improve the performance of the ProB disprover.

The first landing gear system by Andre et al. contains unprovable proof
obligations, where the disprover finds counter examples (e.g., the proof obligation
cockP handleUp/onHand/INV in the model LandingSysDP SWITCH A). This is very
useful feedback to the developer of the model, and the initial purpose of the
ProB disprover. Figure 3 shows the counter-example inside the Rodin proof
tree.

Finally, for the Landing Gear System by Mammar et al., the developers had
trouble discharging a few proof obligations using the other provers (including
the SMT plugin). The ProB disprover was able to discharge them; one of the
proof obligations was a well-definedness proof obligation.

4 Discussion and Conclusion

A secondary motivation for the experiments conducted in this paper was the
empirical evaluation of our constraint solver, more precisely its capability to
detect inconsistencies (a successful proof with the disprover requires finding an
inconsistency without enumerating unbounded variables; see Fig. 1). Finding
inconsistencies is important for detecting disabled events during animation, and
more importantly for constraint-based validation, such as constraint-based dead-
lock checking [11]: it avoids the constraint solver exploring unsuccessful alterna-
tives. In the context of model-based testing, it enables one to detect uncoverable
alternatives, and not spending time trying to find test cases to cover them.

One important issue is the soundness of the ProB disprover. In [6] we have
presented the various measures we are taking to validate ProB’s results. In

52

addition, we have developed a SMT-LIB [4] importer for ProB and have applied
our disprover to a large number of SMT-LIB benchmarks, checking that no “false
theorems” are proven. For this paper, we have also double checked many of the
proof obligations which were only provable by ProB, to ensure that they are
indeed provable. As the Venn diagrams in Figures 4 and 5 show, a large number
of proof obligations can be proven by two or even three different provers. As the
three provers rely on completely different technologies and have been developed
by independent teams, we can have a very high confidence that those proof
obligations are indeed provable.

We have demonstrated that ProB is capable to discharge proof obligations
that currently cannot be proven using Rodin’s auto tactic and the SMT solvers.
Our prover typically deals well with a different kind of proof obligations than
the other provers, and is thus an orthogonal extension rather than a replace-
ment. Rodin’s auto tactic performs well in the realm of set theoretic constructs
and relational expressions, some of which cannot be easily represented in the
SMT syntax. SMT on the other hand performs well on arithmetic expressions,
where the auto tactics often fail. ProB finally covers predicates over enumerated
sets, explicit data and explicit computations and has a good support for integer
arithmetic over finite domains.

However, for models which make heavy use of deferred sets, such as the
graph colouring algorithm model (see Table 1), the ProB disprover can currently
mainly play its role as disprover. More precisely, for any proof obligation which
involves deferred sets and where no precise value of the cardinality of the deferred
set is known, the disprover can only return either a counter example or the
result “unknown”. In future, we plan to improve the treatment of deferred sets
in ProB, and to have the constraint solver determine the cardinalities of those
sets while solving. This should also enable the disprover to act as a prover for
more proof obligations involving deferred sets.

We think that the ProB Disprover is a valuable extension to Rodin’s set of
provers, because it can increase the number of proof obligations that are auto-
matically discharged, thus saving time and money. Overall, the outcome of the
empirical evaluation was a positive surprise, as ProB’s main domain of appli-
cation is finding concrete counter examples, not discharging proof obligations.
In particular, the fact that the number of discharged proof obligations, for the
models under consideration in Table 1, is comparable to that of the SMT plugin
with its two SMT solvers was unexpected. In future, we also plan to use our
SAT backend [16] for the ProB disprover, and evaluate its performance.

Acknowledgements We would like to thank the various developers for giv-
ing us access to their Event-B models, and for discussions and feedback: Jean-
Raymond Abrial, Andre, Attiogbe, John Colley, Régine Laleau, Lanoix, Amel
Mammar, Dominique Méry, Neeraj Kumar Singh, Wen Su.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

53

2. J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool environment
for Event-B. In Z. Liu and J. He, editors, Proceedings ICFEM’06, LNCS 4260,
pages 588–605. Springer-Verlag, 2006.

3. André, Attiogbé, and Lanoix. Modelling and Analysing the Landing Gear Sys-
tem: a Solution with Event-B/Rodin. http://www.lina.sciences.univ-nantes.

fr/aelos/softwares/LGS-ABZ2014/index.php. Solution to ABZ-2014, Accessed:
2014-03-17.

4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

5. C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, Proceed-
ings of the 19th International Conference on Computer Aided Verification (CAV
’07), volume 4590 of Lecture Notes in Computer Science, pages 298–302. Springer-
Verlag, July 2007. Berlin, Germany.

6. J. Bendisposto, S. Krings, and M. Leuschel. Who watches the watchers: Validating
the prob validation tool. In Proceedings of the 1st Workshop on Formal-IDE,
EPTCS XYZ, 2014. Electronic Proceedings in Theoretical Computer Science, 2014.

7. Boniol and Wiels. Landing gear system. http://www.irit.fr/ABZ2014/landing_
system.pdf. Accessed: 2014-03-17.

8. T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. verit: an open,
trustable and efficient smt-solver. In R. A. Schmidt, editor, Proc. Conference on
Automated Deduction (CADE), Lecture Notes in Computer Science, pages 151–
156. Springer-Verlag, 2009.

9. D. Déharbe. Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and S. Reeves, editors,
Proceedings ASM 2010, LNCS 5977, pages 217–230. Springer, 2010.

10. D. Deharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In
Proceedings ABZ’2012, LNCS 7316, pages 194–207. Springer, 2012.

11. S. Hallerstede and M. Leuschel. Constraint-based deadlock checking of high-level
specifications. TPLP, 11(4–5):767–782, 2011.

12. Hansen, Ladenberger, Wiegard, Bendisposto, and Leuschel. Validation of the
ABZ Landing Gear System using ProB. http://www.stups.uni-duesseldorf.

de/ProB/index.php5/ABZ14. Solution to ABZ-2014 case study, Accessed: 2014-03-
17.

13. O. Ligot, J. Bendisposto, and M. Leuschel. Debugging Event-B Models using the
ProB Disprover Plug-in. Proceedings AFADL’07, Juni 2007.

14. Mammar and Laleau. Modeling a Landing Gear System in Event-B. http://

www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html. Solution to
the ABZ-2014 Case Study, Accessed: 2014-03-17.

15. D. Méry and N. K. Singh. Formal specification of medical systems by proof-based
refinement. ACM Trans. Embed. Comput. Syst., 12(1):15:1–15:25, Jan. 2013.

16. D. Plagge and M. Leuschel. Validating B, Z and TLA+ using ProB and Kodkod.
In D. Giannakopoulou and D. Méry, editors, Proceedings FM’2012, LNCS 7436,
pages 372–386. Springer, 2012.

17. Su and Abrial. Aircraft Landing Gear System: Approaches with Event-B
to the Modeling of an Industrial System. http://www.lab205.org/home/#!

/case-landing. Solution to the ABZ-2014 Case Study.

54

4
33

11

2

2132

136

5

Autotactic (2171) SMT (2312)

Disprover (2275)

(a) Su and Abrial, version 1

4
8

5

11

822

305

27

Autotactic (845) SMT (1140)

Disprover (1165)

(b) Su and Abrial, version 2

19
5

17

49

128

37

37

Autotactic (201) SMT (187)

Disprover (251)

(c) Su and Abrial, version 3

13 27
29

292
28

36
Disprover (334)

Autotactic (347)

SMT (385)

(d) Mammar and Laleau

5
96

1

89

276

27

67

Autotactic (466) SMT (400)

Disprover (459)

(e) André, Attiogbé and Lanoix

0
0

0

11

61

2

0

Autotactic (72) SMT (63)

Disprover (74)

(f) Hansen, Ladenberger, Wiegard,
Bendisposto and Leuschel

Fig. 4. Visualization of the benchmark results. Part 1: Landing gear system

55

1 6 19

14
299

177

Disprover (320)
Autotactic (501)

SMT (490)

(a) Colley, CAN Bus

5 13 7739 55

Autotactic (57)
Disprover (184)

SMT (94)

(b) Wiegard, Stuttgart 21

18 86 12112 7

SMT (116) Autotactic (226)

Disprover (19)

(c) Andriamiarina and Mèry, Graph Col-
oring Algorithm

0
19

0

6

335

4

6

Autotactic (360) SMT (358)

Disprover (351)

(d) Singh, Pacemaker

562

Autotactic (67) SMT (67)

Disprover (62)

(e) Leuschel, Set Laws

Fig. 5. Visualization of the benchmark results. Part 2: Miscellaneous models

56

Return of Experience on Automating Refinement in B

Thierry Lecomte1

1 ClearSy,

Aix en Provence, France

Thierry.lecomte@clearsy.com

Abstract. Refining a B specification into an implementation can be a complex

and time consuming process. This process can usually be separated in two

distinct parts: the specification part, where refinement is used to introduce new

properties and specification details, and the implementation, where refinement

is used to convert a detailed B specification into a B0 implementation. This

article presents experience on the development and use of a refiner tool that

automates the production of implementable models, in a number of industrial

applications.

Keywords: B formal method, refinement, deployment, industry

1 Introduction

Historically, the B Method [1] was introduced in the late 80’s to design correct by

construction, safe software. B and Atelier B1, the tool implementing it, have been

successfully applied to the industry of transportation with the development of large

size embedded software [2], [3], [4], [10] and to a lesser extent to other application

domains [5], [7], [11], [12], [13], [15], [16]. Based on the notion of refinement, the B

method allows writing software specification and implementation by using the same

formal language. Specification is progressively transformed (refined) into

implementation by adding algorithmic details and/or transforming abstract data types

into concrete (implementable) ones. If the specification is the result of a purely human

activity, the refinement process could be automated as it consists in a sequence of

transformations applied to the specification in order to obtain an implementable

model.

In this article, we expose our return of experience on applying automatic

refinement in industry, through a number of industrial applications. In section 2, an

overview of refinement in B is given. Automatic refinement key concepts and tooling

are presented in section 3. Section 4 exposes industrial applications of automatic

refinement. Finally section 5 concludes and discusses further work.

1 http://www.atelierb.eu/

57

2 Refining in B

The B method is mainly aimed at software development. B models are structured in

components: a component is usually2 made of a specification model and an

implementation model (the implementation being a refinement of the specification).

Figure 1: structure of B specification and implementation

An implementation may use other specification models by calling their operations

(related models are imported) or by having a read access to the value of variables and

constants (related models are seen). A B model is made of variables, constants and

operations that modify the variables3. Variables and constants have types and

constraints linking some variables and constants can be expressed (called invariant for

variables and properties for constants). Variables and constants can be either abstract

or concrete. Operations are defined with substitutions [8] that can either be

deterministic or non-deterministic. Depending of the nature of the model,

substitutions used to describe operations are restricted: for example, sequencing is

forbidden in specifications, as well as loops, and non-determinism is forbidden in

implementations.

Major restrictions on B modelling are:

 [R1] The obligation to have a concrete variable implemented in one and

only one implementation (it couldn’t be modified at two different places).

This constraint has a major impact on the structure of B projects:

dataflow has to be considered first before defining the components.

 [R2] The imports graph must be a tree (see Figure 2): each concrete

module except the tree root must be imported in the project to insure that

the properties proved locally still hold at global level.

2 Other cases are: (1) Basic machines have no B implementation as they are used to connect B

models with third party software (2) Several successive refinements might be necessary to

obtain implementation.
3 Model initialisation is also considered as an operation. However it can be executed only once

and variables properties have to be set after this execution.

58

Figure 2: incorrect imports graphs

 [R3] The dependency graph must not have any cycle. In this case, it

would not have any valid order of initialisation.

Figure 3: incorrect dependency graph

 [R4] An operation defined in the specification of a component can’t be

used in the implementation of this component. It has to be called in

another implementation that imports this component. This constraint

requires adding extra-layers in the B project.

On the other hand, this modular decomposition based on specification importation

allows proving the models more easily as it breaks down proof complexity and

factorizes the proof of operations. Models are also considered as easier to read and to

understand.

As an example, let us consider the example shown in Figure 4. The specification

(machine M) declares a variable setv, typed as a subset of 1..10. This variable is

initialized as empty. Obviously this variable can’t be implemented as it is. Sets are

often refined by using a table (a function) that associates to each element of the

domain (here the interval 1..10) a Boolean value indicating if the element belongs to

the set. In this example, the new variable bitv is declared as a total function from the

interval 1..10 to BOOL.

The gluing invariant

setv = bitv-1[{TRUE}]

establishes a direct relation between the variable setv (that doesn’t exist anymore in

refinement M_r) and the variable bitv: all elements for which bitv is valued as TRUE

belong to setv. Initialisation has also to comply with this gluing invariant: setv being

initialised as empty, bitv has to be initialised with all elements associated to FALSE.

59

Figure 4: example of specification and refinement

3 B Automatic Refinement

Rationale. Automatic refinement has been initially imagined [6], developed and put

into existence by Matra Transport with the automated “Canarsie line” metro in New-

York [9]. By abstract model (see Figure 5), we do not mean the collection of all

specification models of the project but a selection of related top level components,

including specification, refinement and implementation models, that capture the

specification of the software. This specification is abstract but contains all details: it

just needs to be transformed into an implementable model.

Figure 5: separation between abstract model and concrete model

Automatic refinement is aimed at automatically generating the concrete model (or

part of it) from the abstract model, with the objective to dramatically reduce

development costs. Indeed, safety critical software usually requires twice the

workload because of additional testing, verification and validation. Automatic

60

refinement is aimed at reducing the workload by up to half as the concrete model is

automatically generated and the model is easier to validate. Finally safety critical

software would only require the budget of a non-safety critical software development

to complete.

Concepts. The main concept is the automatic building of the concrete model by

applying refinement patterns step by step, the refinement patterns being expressed as

refinement rules. The data (variables) are refined first. The substitutions are then

refined.

Abstract model is usually constructed with abstract data typed as set, partial function,

relation, etc. As B0 model only allows concrete data type as scalar, total function,

etc., data refinement consists in replacing abstract data with more concrete one : this

needs to introduce a gluing invariant describing how abstract variable becomes

concrete. Data refinement can be done in several steps: not directly from abstract to

concrete but with intermediate data representation. Data can already be concrete but

be refined in order, for instance, to reduce the memory footprint. In principle, the

choice of a refinement for a variable is done regarding its initialisation and operations

manipulating this variable. In practice, the choice is done regarding the type of the

variable. However types for concrete variables are limited, B0 initialisation is limited

too. To automate the data refinement, refinement patterns are given describing the

constraints that have to be fulfilled by refined data, the introduced refining variable,

and gluing invariant. Then the automatic refiner chooses a refinement pattern

regarding the properties of the variables. This choice can be modified by the user who

can add new refinement pattern into the tool.

Figure 6: refinement process order

For substitution refinement, treatments on abstract data have to be refined to become

translatable treatment on concrete data. B0 allowed substitutions are : assignment, IF,

CASE, and WHILE. Similarly to data refinement, substitution refinement is based on

refinement patterns that should make explicit under which constraints they can be

applied, what are the resulting substitutions, and either it is an implementation or it

should be refined one more time.

The refinement of a component consists in the 3 successive actions (see Figure 6):

determining refinement pattern for variables of a component, applying refinement

patterns for all the operations of a component, and producing the resulting B

component. When a variable is refined, related information is stored (variable

61

refinement information) in order to be reused later on and to speed up the process

(variable refinement is elaborated once for all). The recursive application of these 3

steps should lead to a B project fully implemented, if the refinement patterns can be

applied at each step of the process. If it is not true, the refinement process stops and

some interaction with the user are required to modify existing refinement patterns

and/or add new ones.

Tools. In 1997, Matra Transport International (now Siemens Transportation Systems)

developed internally a tool called edithB that was used for the development of the

Automatic Train Protection System of Canersie Line in New York. This tool was

developed in Ada.

In 2008, with Siemens agreement, ClearSy developed a similar tool, called BART (B

Automatic Refinement Tool), in order to allow the Community to benefit from

automatic refinement tools. The development of the tool has been partly supported by

grant No ANR-06-SETI-015-03 awarded by “Agence Nationale de la Recherche”

during the R&D project RIMEL (Incremental refinement of event models). In 2009,

BART4 is integrated to the first open-source version of Atelier B (4.0). BART is made

more generic than EdithB, in particular the support of the vital coded-monoprocessor

is removed. This tool is developed in C++/Qt.

Figure 7: example of an IMPORTED_OPERATION substitution

For both tools, refinement patterns are expressed using a rich language [9] that allows

to specify guards/constraints like DECL_OPERATION (that requires for an operation

to be defined), to tune the refinement process and to use advanced substitutions like

TYPE_ITERATION (that generates while loops when iterating over a type) or

IMPORTED_OPERATION (that generates operation definition and operation call

when a treatment needs to be exported to another machine).

Figure 8: example of a rule using DECL_OPERATION. The valuation of @a by @b is

replaced by the call of an operation (named @d) that returns @b.

4 https://sourceforge.net/projects/bartrefiner/

62

These advanced substitutions allow mimicking human refinement by defining

precisely how to refine variables and substitutions. These advanced substitutions are

replaced by regular substitutions during the automatic refinement process.

The refinement engine manages a stack which contains information about the project,

and how variables are refined. This stack also contains tags generated by the

refinement rules when applied, these tags have no prior semantics but could be used

by refinement rules to give a particular direction to the refinement process.

Metrics. Detailed metrics on edithB are not publically available. Concerning BART,

the complete software is made of 264 kloc decomposed as follows:

- Core tool: 89 kloc.

- GUI: 12 kloc

- B Compiler : 154 kloc

- Bwidgets : 7 kloc.

The core tool is made of the refining engine (the biggest module – 7 kloc), the

rules parser, the splitter, the namer and the pattern matcher. The complete

development was completed in 10 months.

The tool was tested and validated using regular test bench. Indeed, even if the tool

is directly contributing to the building of SIL45 software, the tool is not expected to be

“correct-by-construction” – in case of design error, the generated model should be not

provable. In this case, the Atelier B prover is our safety belt.

4 Industrial Applications

Several applications have been developed with edithB and BART.

EdithB has been used for an automatic train protection software (embedded

software in charge of stopping a metro in case it is not able to comply with speed

limit) in New York [10] and for a wayside control unit (in charge of avoiding train

collision) in Roissy airport [2]. If we compare the figures from a manual development

[3], [4] and from an automatic refinement development, for the same kind of

application, it is apparent that automatic refinement is generating more lines of B

models and target code (see Table 1). Meteor and Canarsie being similar applications,

automatic refinement is able to double the size of the modelling. There are several

reasons for that: every part of the concrete model is usually broken down into many

intermediate levels, which produce many lines of B (hence many lines of target code),

and code is not shared through the refinement process (for example, generic elements

share a similar code, however the code is duplicated at each use). On the proof

obligations side, Meteor, Canarsie and Val Roissy generate respectively around

27 000, 82 000 and 43 000 proof obligations. Even if it is difficult to compare proof

just from these figures, we can notice automatic refinement generates more proof

obligations. Most of them are located in the abstract model, demonstrating the

effectiveness of automatic refinement. Moreover, while 1 400 mathematical rules

5 Safety Integrity Level 4 (highest level)

63

were required to prove Meteor proof obligations, only 290 rules were required for Val

Roissy (together with 61 generic demonstrations, 97% proof obligations were

automatically demonstrated).

Table 1. Number of lines of B models per project.

Project Abstract model Concrete manual Concrete automatic

Meteor <- 115 000 -> None

Canarsie line 125 000 38 000 110 000

VAL Roissy 38 000 27 000 117 000

BART has been used for the development of several SIL4 T26 tools, mainly to

avoid the development of two redundant software (B allows to develop single SIL4

proven software, non-proven software requires to be developed twice by two separate

teams with distinct technologies). Figures similar to edithB have been measured from

these developments:

- manual modelling represents one third of the total while automatic

refinement is two third. Around 500 refinement rules have been added in

every project.

- abstract modelling represents two third of development + proof cost while

concrete modelling is one third. However 1 800 mathematical rules were

added to the prover (compared to the 290 for Val Roissy). This can be

explained by the fact that Atelier B main prover mathematical rules database

has been enriched to cover the same kind of modelling (ATP software), so

the new kind of modelling brought by these T2 tools requires to slightly

bootstrap the prover.

- generated source code has twice the size of handwritten source code because

of the many operation calls. Because of constraint [R4], every refinement

step requires to add an extra-layer of imports, hence the number of lines.

Generated models keep track of the initial substitution and of the refinement rules

used, with comments inserted in the model (see listing below).

Load_component_2(pcd, pid, pctd2) =

 VAR

 l_1

 IN

 l_1 :(l_1 : INT);

 /* Rule : specific.r14_exit */

 /*? l_1 := perm_component_cpt ?*/

 /* Rule : default.default */

 l_1 <-- Load_component_2_1 ;

 test_max_component_def(l_1) ;

6 According to EN50128 standard, tools are categorized in three : T3 for tools directly

contributing to source code, T2 for tools performing verification, T1 for all other tools

(editors for example).

64

 /*? perm_component_r(bijection_component_def (perm_component_cpt

+ 1)) := pid ?*/

 /* Rule : default.default */

 Load_component_2_2(pid) ;

 …

Refinement rules are mainly gathered in a single file (rmf) shared in the whole

project. This file has to be set up right at the beginning of the project by identifying

the abstract data types that need to be taken into account and how they are

implemented. This identification requires performing several interactive refinement

sessions (see Figure 9). Then automatically refining the project is initiated, the

components being refined in parallel by different users. New refinement rule is added

in the shared rmf file if the rule is generic (reusable in another operation / component)

or added to a rmf file specific otherwise. Shared rmf file is composed of:

- 400 rules for operations

- 45 rules for structure

- 30 rules for data

- 30 rules for initialisation

Figure 9: example of interactive refinement session. The refinement tree is displayed on

bottom left

5 Return of Experience on Using Set Theory Modelling

The approach presented in this paper is aimed at developing abstract deterministic

software specification, using B as a high level language, and leaving most of

implementation details to a mechanical, semi-automated process. The specification

has to be written using set theory and first order logic, in a way to avoid introducing

programmatic gimmicks too early.

For example, in the case of the block controller in [2], blocks are either occupied by a

train or free. This information should be safely computed by the functional module

“Block Logic”. It is formalized by the abstract variable occupied_blocks:

65

- Either as a subset of t_block (1): a block belongs to occupied_blocks if and

only if it is considered to be occupied.

- Or as a total function from t_block to BOOL (2), associating to a block the

value TRUE when the block is occupied and FALSE when it is not.

Actually this second choice suits less the proposed B Method, since it is more an

encoding of the former (i.e., the use of a set characteristic function instead of the set

directly). In this case using a subset of blocks is more abstract. Expressions,

predicates and substitutions concerning this set are also more abstract and closest

from informal specification. We prefer to use properties over sets when specifying

instead of describing the intricate loops that are required to iterate over tables.

We also use relations, partial functions and total functions to type abstract data. For

example, the abstract constant ctx_next_block_up associates to a block its next

upward block. A block has at most one next block located in the upward direction. A

terminal block in the upward direction has no next upward block. So next_block_up is

a partial function from t_block to t_block. Finally property states are added to the

model, such as this one (linking blocks states and sensors):

With such predicate, we are able to capture a property in a compact form that is quite

straightforward to check. Up to 16 properties have to be formalized in the abstract

model. Although it seems to be a small number, some properties had to be cut into

many actual properties. At the end, the size of the static and dynamic properties in the

main abstract machine is more than 1,000 line long. With the mathematical proof, we

do not have to verify the consistancy of these 1,000 lines but just to check that they

correctly refine a unique property that is easier to check against the informal

specification. In the case of xml engineering tools, xml models are represented as

lists, lists of lists, etc. Data types are more elaborated with the notion of node pointers

and references to be able to navigate the xml trees. Abstract iterators operate on

(node) lists, so many of the existing refinement rules are still valid in this context.

However the development of software aimed at a very different domain induced

important modelling effort:

- New data types and structures imply to completely revisit data type related

refinement rules

- Existing structural refinement rules have to be specialized in order to take

into account these new data types and structures

From this experience, we may consider that the first application of automatic

refinement to a new domain is not expected to be economically sound as some effort

is required to axiomatize refinement for this domain. However further applications

66

allow to reuse most of existing rules and to specialize only when required, for

particular algorithms. Similarly automatic refinement was initially expected to help

newcomers to apply refinement more efficiently. It appears that the profile required to

efficiently use automatic refinement demands so many skills that finally only

proficient practitioners and experts are able to deal with it. Indeed writing refinement

rules could be seen as abstracting the refinement process and requires a strong habit

of it.

5 Conclusion and perspectives

Automatic refinement is likely to improve productivity by automating tasks, leading

to simpler proofs and simplifying the reuse of known refinement patterns. Similar

types and treatments are always refined the same way. This process is not limited to a

single type of application, as it has been applied to embedded software as well as to

more classical applications (symbolic computation, SysML model analyser /

transformer), while obtaining the same metrics (modelling, refinement and proof

effort). The process is scalable.

Figure 10: conflict depicted to the user

On the other hand, even if it was our objective when we decided to develop BART, an

automatic refiner is not a tool for beginners as it requires understanding why the

automatic refinement process stops and how to modify existing refinement rules.

Having some experience in refining in B is mandatory to get the most out of it.

67

Constraint [R1] is posing a problem to existing refinement algorithms: in case of

conflicting rules, a single variable could be implemented in different components at

the same time that is rejected by Atelier B project checker. We are currently working

on improving these algorithms in order to not apply conflicting rules and to provide

some guidance to the user (interaction with user still remains to be decided). Current

feedback is provided as an implementation graph exhibiting exports and implemented

constraints. In Figure 10, we can clearly see a cycle (the upward arrow from variable

mb to component mask_blocks_1). The art of the automatic refinement is today to

understand from this graph how to modify refinement rules in order to solve these

conflicts.

We are also investigating the possibility to “prove” refinement rules in order to

consider that related proof obligations are “by construction” already proven. We are

using an approach similar to the Atelier B main prover: the inference engine is based

on transformation rules that have been formally proven, hence the successive

application of these rules to solve a predicate is considered correct and the predicate is

considered true.

References

1. Abrial, J.R. (1996) , The B-book: Assigning programs to meanings, Cambridge University

Press

2. Amelot, A. & al (2005), Using B as a High Level Programming Language in an Industrial

Project: Roissy VAL, ZB 2005

3. Behm, P. & al (1998), METEOR: an Industrial Success in Formal Development, B’98

4. Behm, P. & al (1999), METEOR: a Successful Application of B in a Large Project, FM’99

5. Benveniste, M. & al (2009), A Proved “Correct by Construction” Realistic Digital

Circuit, RIAB, FMWeek 2009

6. Burdy, L.(1996) , Automatic Refinement. In Proceedings of BUGM at FM'99

7. Casset, L.,(1999) A formal specification of the Java byte code verifier using the B method,

Lisbonne 99

8. ClearSy (2014), Atelier B: B language Reference Manual

9. ClearSy (2014), BART: User Manual

10. Essamé, D. & al (2007), B in Large-Scale Projects: the Canarsie Line CBTC Experience,

B 2007

11. Hoffmann, S. & al (2007), The B Method for the Construction of Micro-Kernel Based

Systems, ZB 2007

12. Lecomte, T. (2008), Safe and Reliable Metro Platform Screen Doors Control/Command

Systems, FM 2008

13. Lecomte, T. & al (2007), Formal Methods in Safety Critical Railway Systems, SBMF 2007

14. Requet, A. & al (2008), BART: A Tool for Automatic Refinement, ABZ 2008

15. Sabatier, D. & al (2006), Use of the Formal B Method for a SIL3 System Landing Door

Commands for line 13 of the Paris subway, Lambda Mu 15

16. Sabatier, D. & al (2008), FDIR Strategy Validation with the B method, DASIA 2008

68

Programming with Partially Specified
Collections

Gianfranco Rossi

Dipartimento di Matematica e Informatica
Università degli Studi di Parma, Parma, Italy

gianfranco.rossi@unipr.it

Abstract. Enumerated collections (e.g. lists, sets, etc.) provided by pro-
gramming languages are usually defined by completely and precisely enu-
merating all their constituent elements. Conversely, in (constraint) logic
programming languages it is common to deal with partially specified col-
lections where either some elements or some parts of the collection are left
unknown. In this paper we claim that partially specified collections (in
particular, lists and sets) can be conveniently exploited in a wider setting,
even in the context of more conventional languages using a library-based
approach. We prove this claim by showing a number of simple examples
using Java and the Java library JSetL.

1 Introduction

Programming languages usually provide several kinds of collections, e.g. array,
string, lists, sets, multi-sets, maps, etc, either as primitive abstractions or pro-
grammed by exploiting the data abstraction facilities of the language itself and
made available to users as standard libraries. For example, sets are a primi-
tive data abstraction in Pascal, SETL and Python, while they are provided as
libraries in C++ and Java.

In this paper we will restrict our attention to enumerated collections only,
that is collections designated by explicitly enumerating its constituting elements.
Hereafter the term collection implicitly refers to enumerated collections.

In imperative programming languages collections need to be always com-
pletely specified whenever we operate on them. This means that all elements of
a collection must be provided and they must have known values. For example,
using the interface Set of java.util, the set {1, 3, 0} can be constructed by
executing the statements

s.add(0); s.add(3); s.add(1);

where s is an object denoting the empty set which can be defined as
Set s = new HashSet();

and HashSet is one of the implementations of the interface Set provided by
java.util. Note that the requirement to be completely specified does not pre-
vent a collection from containing variables, but whenever the collection needs
to be evaluated all variables possibly occurring in it must be replaced by their
actual values.

69

In contrast, collections in declarative programming languages, such as lists
in Prolog, are allowed to contain unknown elements and to be only partially
specified, and, nevertheless, they can be accessed and manipulated. For instance,
the Prolog predicate [a,b,c] = [X,Y|R] compares the (completely specified)
list of three elements, a, b, and c, with the partially specified list containing
two unknown elements X and Y and an unknown remainder part R (i.e., any list
containing at least two elements).

Usefulness of partially specified collections has been amply demonstrated in
the context of declarative programming languages. In particular, programming
with partially specified lists is a well-assessed technique in standard logic pro-
gramming languages. Partially specified sets, instead, are supplied by extended
logic programming languages with sets, such as [6, 7, 5], and are shown to be
a powerful data abstraction. Usefulness of partially specified sets is advocated
also in specific application areas such as deductive databases, computational
linguistics, and knowledge representation.

Aim of this paper is to show that partially specified collections can be conve-
niently exploited also in a more conventional setting, namely an imperative O-O
programming language. In particular, we consider a library-based approach where
the new data abstractions are defined by using the language data abstraction
mechanisms, without requiring any extension of the host language.

We prove our claim by presenting a number of simple examples written in
Java using JSetL [19], a general-purpose library that supports partially specified
lists and sets, within the O-O language Java. JSetL integrates the notions of
logical (or constrained) variable, (set) unification and constraints that are typical
of constraint logic programming languages into the Java language. In particular,
it allows logical variables to occur in list and set data structures and provides
operations to deal with such objects.

The presented examples aim at showing, in particular, how partially specified
lists and sets can be exploited for:

– supporting a declarative programming style
– providing data modelling tools (in particular sets and set unification) which

prove to be particularly suitable for problems involving non-determinism
– supporting constraint programming.

It is important to note that our main concern here is on providing modelling
and programming support. Conversely we are only relatively little interested
in the efficiency issue (e.g., efficiency of the constraint solver). Furthermore,
our focus is on programming rather than on constraint solving or satisfiability
checking of formulas involving partially specified collections.

Though our discussion is limited to lists and sets, similar considerations could
apply to other kinds of collections as well. Moreover, though we are focusing on
Java, the same considerations could be easily exported to other O-O languages
(such as C++) where these data abstractions could be supplied by libraries,
while they can serve as useful guidelines to devise extensions to programming
languages where these new data abstractions could be provided as primitive
ones.

70

The paper is organized as follows. Section 2 introduces the notion of partially
specified collection, showing how logical variables can be used within collections
to represent unknown elements or part of the collection. In Section 3 we start
considering operations on partially specified collections, specifically (set) uni-
fication. In Section 4 we show how simple inequality, membership and integer
comparison constraints over elements of partially specified collections can be
used to describe and compute solutions for a number of common programming
problems. Section 5 takes into account also set variables, whose domains are col-
lections of sets, and it briefly shows how set variables and set constraints can be
advantageously exploited in conjunction with partially specified sets. Sections 6
and 7 are devoted to further remarks and to draw some conclusion.1

2 Partially Specified Collections

Declarative programming languages (e.g., functional and logic programming lan-
guages) are based on a notion of variable, often called logical (or mathematical
variables, constrained) variable, that differs from that of imperative program-
ming languages. Logical variables represent unknowns, not memory cells. As
such they have no modifiable value stored in them, as ordinary programming
language variables have. Conversely, one can associate values to logical variables
through relations (or constraints) involving logical variables and values from
some specific domains.

When the domain of a (logical) variable is restricted to a single value then
the variable is said to be bound (or instantiated) to this value. Otherwise, the
variable is unbound. An equality relation, in particular, may restrict the domain
of a logical variable to a single value. For example, if x is a logical variable
ranging over the domain of integers, the equality x = 3 forces x to be bound to
the value 3. However, the same result could be obtained through other relations,
e.g., x < 4 ∧ x > 2. The value of a logical variable is immutable. That is it can
not be changed, e.g. by an assignment statement like in imperative languages.

Logical variables are found also in conventional programming languages that
support constraint programming (e.g., Alma-0 [1]), as well as in libraries for
constraint programming, such as ILOG [13] and Choco [3] (see also the recent
Java Specification Request for a standard Java Constraint Programming API
[14]).

In this paper we will refer to what is provided by JSetL [19], a Java library
that supports declarative (constraint) programming in an O-O framework. In
JSetL a (generic) logical variable is an instance of the class LVar. Basically, LVar
objects can be manipulated through constraints, namely equality (eq), inequality
(neq), membership (in) and not membership (nin) constraints. Moreover the
library provides methods to test whether a variable is bound or not, to get the
value of a bound variable (but not to modify it), to get its external name, and
so on. Values associated with generic logical variables can be of any type. For

1 An extended version of this paper appeared in Computer Languages, Systems &
Structures, Elsevier, vol. 37/4, 178-192, 2011

71

some specific domains, however, JSetL offers specializations of the LVar data
type, which provide further specific constraints. In particular, for the domain
of integers, JSetL offers the class IntLVar, which extends LVar with a number
of new methods and constraints specific for integers. In particular, IntLVar

provides integer comparison constraints such as <, ≤, etc.
Other important specializations of logical variables are the class LCollection

and its derived subclasses, LSet (for Logical Sets) and LList (for Logical Lists).
Values associated with LSet (LList) are objects of the java.util class Set

(List). A number of constraints are provided to work with LSet (LList), which
extend those provided by LVar. In particular, LSet provides equality and in-
equality constraints that account for the semantic properties of sets (namely, ir-
relevance of order and duplication of elements); moreover it provides constraints
for many of the standard set-theoretical operations, such as union, intersection,
set difference, and so on.

Example 1. Logical lists/sets in JSetL.

LVar x = new LVar(); // an unbound logical variable
LVar y = new LVar("y",1); // a bound logical variable

// with external name "y" and value 1

LList ll = new LList(); // an unbound logical list
LSet ls 1 = new LSet(); // an unbound logical set

A collection where either some elements, or part of the collection itself, are
unbound logical variables represents a partially specified collection. For example
(using a Prolog-like notion), the list [1,X,Y], where X and Y are unbound logical
variables, denotes a partially specified list containing one known element 1 and
two unknown elements, denoted X and Y. As another example, the list [1,2|Z],
where Z is an unbound logical list (i.e., a logical variable ranging over the domain
of lists), designates an open list containing two known elements 1 and 2 and an
unknown remainder part denoted by Z.

A partially specified set (list) can be created in JSetL by adding possibly
unknown elements, i.e., unbound LVar objects, to either a known or an unknown
set (list) using the element insertion operator ins.

Example 2. The two partially specified lists [1,X,Y] and [1,2|Z] can be defined
in JSetL as follows:

LVar X = new LVar();

LVar Y = new LVar();

LList cl = // the closed p.s. list
LList.empty().ins(Y).ins(X).ins(1); // [1,X,Y]

and

LList Z = new LList(); // the open p.s. list
LList ol = Z.ins(2).ins(1); // [1,2 |Z]

JSetL provides a number of facilities, mainly in the form of constraints, to
access and manipulate partially specified lists/sets (e.g., unification). Conversely,

72

most of the non-CLP languages/libraries mentioned above allow (possibly un-
bound) logical variables to occur in conventional data structures, such as vectors,
but they do not provide any specific operation to deal with them as partially
specified collections. Even languages/libraries that provide set constraints [11],
such as ILOG-Solver [13], Choco [3], and Mozart-Oz [15], do consider only com-
pletely specified sets.

3 (Set) Unification

One of the basic operation to access and manipulate partially specified collections
in logic programming languages is unification. JSetL provides both standard
unification, over LList objects, and set unification, over LSet objects. Both
forms of unification are implemented by the equality method eq. The meaning
of o1.eq(o2) is the unification between the objects o1 and o2. o1 is either a
simple logical variable (i.e., an instance of LVar) or a possibly partially specified
data collection (i.e., an instance of LList or LSet). o2 is either an object of the
same type as o1 or an admissible value for it (i.e., a Set object, an Integer

object, and so on). The following is an example of unification over lists in JSetL.

Example 3. Check whether list l3 is the concatenation of lists l1 and l2. The
problem can be modelled as a (list) unification problem. If the first list l1 is
the empty list, the other two lists must be unifiable (and vice versa). Otherwise,
the given lists must satisfy the constraint (using a Prolog-like abstract nota-
tion) l1 = [x | l1new] ∧ l3 = [x | l3new], where l3new is the concatenation of
the “shorter” list l1new and the given list l2, and equality = represents unifi-
cation.

public static boolean concat(LList l1, LList l2, LList l3) {
if (solver.check(l1.eq(Lst.empty()).and(l2.eq(l3))))

return true;
else {

LVar x = new LVar();

LList l1new = new LList();

LList l3new = new LList();

return
solver.check(l1.eq(l1new.ins(x)).and(l3.eq(l3new.ins(x))))

&& concat(l1new,l2,l3new);

}
}

The first call to the method check tests satisfiability of the constraint l1 =
[] ∧ l2 = l3. solver is an object of the class SolverClass which is assumed
to be created outside the method concat. Solving an equality calls into play
unification: if the two lists are unifiable, then check returns true, otherwise it
returns false. If the constraint l1 = [] ∧ l2 = l3 is false, then the constraint
l1 = [x | l1new] ∧ l3 = [x | l3new] is checked and the result is combined with
the result of the recursive call to concat.

73

This example shows how the use of a partially specified collection and uni-
fication allows us to devise a truly declarative solution to the given problem.
Another advantage of using unification—in place of assignment and standard
programming variables—is that the same methods can be used both to assign
values to variables and to test known values. In particular, unification over par-
tially specified lists can be used both to access single elements of a list and to
construct the list itself. For example, the method concat can be used either
to test if a list l3 is the concatenation of two given lists l1 and l2 or to get
one list given the other two. No assumption is made about which are input
and which are output parameters. As an example, if l3 is the JSetL LList for
[’d’,’a’,’t’,’a’,’.’,’t’,’x’,’t’], l2 is the JSetL LList for [’.’,’t’,’x’,’t’], and
l1 is an unbound LList, then the invocation concat(l1,l2,l3) binds l1 to the
LList [’d’,’a’,’t’,’a’].

Set unification differs from standard unification in that the former must ac-
count for the properties of sets, namely that order and repetition in a set do
not matter. Thus, for example, the two set unification problems, {a} = {a, a}
and {a, b} = {b, a} have a solution, whereas they would have no solution using
standard unification. A general survey of the problem of unification in presence
of sets, across different set representations and different admissible classes of set
terms, can be found in [8]. The following is a simple example using partially
specified sets and set unification.

Example 4. (Coloring of a map) Given a map of n regions and a set of m col-
ors find an assignment of colors to regions such that neighboring regions have
different colors. To solve this problem we assume to represent the map as a set
whose elements are themselves sets containing two neighboring regions and to
represent each region as a distinct unbound logical variable. Hence, the map is
represented by a partially specified set. For example,

{{r1, r2}, {r2, r3}, {r3, r4}, {r4, r1}}
where r1, r2, r3, r4 are unbound logical variables, is a map of four regions. With
these assumptions, the coloring problem can be modelled as the problem of
unifying the set representing the map with the set of all admissible unordered
pairs of colors that can be constructed from the given m colors. For example,
given the map considered above and the set of colors {1, 2, 3}, the problem to
be solved turns out to be (using the usual Prolog-like abstract notation):

{{r1, r2}, {r2, r3}, {r3, r4}, {r4, r1} |R} = {{1, 2}, {2, 3}, {1, 3}}
where R represents the set of viable color pairs that possibly have not been used
in the computed solution. One of the many possible solutions to this problem is:

r1 = 1, r2 = 2, r3 = 1, r4 = 3, R = {{2, 3}}.
Using JSetL, the proposed modelling of the coloring problem can be easily im-
plemented in Java by the following method:

public static void coloring(LSet map, LSet colorPairs) {

LSet R = new LSet();

solver.check(colorPairs.eq(R.insAll(map)));

}

74

where R.insAll(map)) is the set containing all elements of the set map and an
unknown part R, and colorPairs is the set of all admissible unordered pairs of
colors. This set can be constructed “by hand” or it can be computed starting
from the set of colors by exploiting set unification in a way similar to the one
shown in Example 5.

The coloring example shows that the use of partially specified sets and set
unification allows us to devise very concise and declarative—though possibly
inefficient—solutions.2

A key feature of unification over partially specified sets is the non-determinism
embedded in the set unification algorithm. As a matter of fact, a set unification
problem may have more than one (independent) solution (non-uniqueness of
mgu’s). For example, {X,Y } = {a, b}, where X and Y are unbound variables,
has two solutions, namely (i) X = a, Y = b and (ii) X = b, Y = a. The set uni-
fication algorithm can compute all these solutions, one after the other, through
backtracking. The following is an example that shows how to exploit this feature
within a Java program.

Example 5. (Permutations) Print all permutations of the integer numbers from 1
to n (n ≥ 0). The problem can be modelled as the problem of unifying a (partially
specified) set of n logical variables {X1, . . . , Xn} with the set of the integer
numbers from 1 to n, i.e., {X1, . . . , Xn} = {1, . . . , n}. Each solution to this
problem yields an assignment of (distinct) values to variables X1, . . . , Xn that
represents a possible permutation of the integers between 1 and n. The following
method allPermutations implements this solution in Java using JSetL.

public static void allPermutations(int n) {
IntLSet I = new IntLSet(1,n); // I = {1,2,. . . ,n}
LSet S = LSet.mkLSet(n); // S = {X1,X2,. . . ,Xn}
solver.add(S.eq(I)); // {X1,X2,. . . ,Xn} = {1,2,. . . ,n}
solver.check();

do {
S.printElems(’ ’);

System.out.println();

} while (solver.nextSolution());

}

The invocation LSet.mkLSet(n) creates a set composed of n unbound logical
variables. This set is unified, through the constraint eq, with the set of n integers
I. The method add allows a constraint to be added to the constraint store of
the specified solver. Constraints stored in the constraint store can be checked
for satisfiability by calling the constraint solving procedure of the solver, e.g. by
invoking the method check(). Calling the method nextSolution() allows to
check whether the constraint in the constraint store of the current solver admits
further solutions and possibly to compute the next one. Finally, the invocation

2 An alternative, more efficient, solution of the coloring problem using constraints will
be hinted at in the next section.

75

s.printElems(’ ’) prints all elements of the set s on the standard output
separated by the specified character (blank in this case).

This example also illustrates the interplay between Java statements and the
non-determinism mechanism embedded in the JSetL constraint solving proce-
dure. In particular, using the method nextSolution() within an iterative state-
ment such as the do while construct provides a simple way to compute all
possible solutions for a given problem. As a matter of fact, nextSolution()

exploits the backtracking mechanism embedded in the constraint solver: calling
nextSolution() forces the computation to go back until the nearest open choice
point. In this example the choice points are created during execution of the set
unification algorithm called into play by solving the equality constraint between
the two sets I and S.

Remark 1. The set unification problem has been proved to be a NP-complete
problem. This may lead, in general, to an exponential growth in the complex-
ity of the satisfaction procedure used in JSetL. However, the full power of set
unification is not always required. As an example, in the problem of Example 5
we can observe that one of the two sets is completely known (the set I), while
the other (the set S) is a closed set of exactly n unbound variables. Thus we
can replace the equality constraint S = I that implements general set unification
with the conjunction of constraints 1 ∈ S∧ 2 ∈ S∧ . . .∧n ∈ S.3 The new version
of the method allPermutations using n membership constraints turns out to
be executed much more efficiently than the previous one.

4 Constrained Partially Specified Collections

Logical variables occurring in partially specified collections can be suitably con-
strained. This allows us, in general, to characterize more precisely the collection
of data structures denoted by a partially specified collection. For example, the
partially specified list [X,Y], where X and Y are unbound logical variables,
with the additional constraint X > Y , can be used to designate any list of
two elements with the first element greater than the second. The following is
a simple example showing how inequality and membership constraints can be
advantageously exploited in conjunction with partially specified lists.

Example 6. (All pairs) Compute the set of all pairs [x,y] such that both x and
y belong to a given set s and x 6= y.

public static Set<?> allPairs(Set<?> s) {
LVar x = new LVar();

LVar y = new LVar();

LList pair = new LList.empty().ins(y).ins(x)); // a pair [x,y]
solver.add(x.in(s).and(y.in(s)).and(x.neq(y)));

return solver.setOf(pair);

}
3 Note that S has fixed cardinality, which prevents it from containing other values

other than 1..n.

76

The first four statements serve to specify the form of the pairs we are looking
for: partially specified lists of the form [x,y], with x ∈ s ∧ y ∈ s ∧ x 6= y. The
last statement calls the method setOf of the current solver which collects in a
Java set all the pairs satisfying this specification and returns it as its result.

This example shows an interesting interaction between partially specified col-
lections (namely, JSetL logical lists), containing logical variables, and completely
specified collections (namely, sets and lists of java.util). The latter are used
to contain known values, while the former are used to describe the general form
of values to be computed.

The method setOf implements a (limited) form of intensionally defined sets.
A set s is defined as the set of all possible values of a variable x for which a
condition ϕ, involving x, turns out to be satisfied, i.e. s = {x : ϕ}. If ϕ is
represented as a JSetL constraint, the set collection can be easily performed by
using setOf() over this constraint. As a matter of fact, the set s computed in
the above example is the set { [x, y] : x ∈ s ∧ y ∈ s ∧ x 6= y}.

The same effect can be obtained more explicitly by combining iteration and
nextSolution(), similarly to Example 5. Specifically, the call to the method
setOf in Example 6 can be replaced by the following code fragment:

Set pairSet = new HashSet();

solver.check();

do {
pairSet.add(pair.getValue());

} while (solver.nextSolution());

In this solution each computed pair is explicitly added to the set of all solu-
tions s by using the (destructive) add method of Java sets. Collecting all solutions
in a data structure such as s—instead of simply printing them as in Example
5—allows the program to subsequently work on them using operations provided
by that data structure.

In the next example we make use of a list of constrained integer logical
variables to represent the solution we are looking for. Assigning possible values
to these variables will allow us to obtain all the admissible solutions for the given
problem (actually, only one solution in the considered example).

Example 7. (Sort) Sort a collection of n distinct integer numbers in ascending
order. The problem can be modelled as a finite domain constraint satisfaction
problem in the following way. Let s be the Set object representing the collection
to be ordered, and lOrd be a list of n integer logical variables Xi, i = 1 . . . n.
Variables in lOrd are constrained so that each Xi has domain s and the following
conjunction holds:

∧n−1
i=1 Xi < Xi+1. Then a solution to this problem is computed

by finding the instance of lOrd (i.e., an assignment of values to all its variables)
that satisfies the given constraint. This modelling of the sorting problem is easily
implemented in Java using JSetL by the following method:

public static List sortList(Set s) {
int n = s.size();

77

IntLList lOrd = IntLList.mkLList(n); // lOrd = [X1,X2,. . . ,Xn]
Iterator it = lOrd.iterator(); // it = Iterator over LList
while(it.hasNext()) // ∀i ∈ 1..n, Xi.in(s)

solver.add((((IntLvar)it.next()).in(s)));

for(int i=0; i<n-1; i++) // ∀i ∈ 1..n, Xi.lt(Xi+1)
solver.add(((IntLvar)lOrd.get(i)).lt((IntLvar)lOrd.get(i+1)));

solver.check();

return lOrd.getValue();

}

The invocation IntLList.mkLList(n) creates a partially specified list composed
of n integer logical variables (IntLList is a subclass of LList where list ele-
ments are restricted to be integers—either constants or logical variables of type
IntLVar). The while statement allows membership constraints to be added to
the constraint store of the constraint solver solver for each variable of the list
ordList. The next for statement adds the lt constraints that force values for
the variables in ordList to be assigned respecting the desired ordering relation
(namely, <). These constraints, along with the membership constraints posted
before, are checked for satisfiability through the method check(). Finally, the
Java list representing the value of the logical list ordList is obtained by invoking
the method getValue and returned as the final result of the method sortList.
As an example, if s is the set {5, 2, 4}, the constraint to be solved is

X1 ∈ {5, 2, 4} ∧X2 ∈ {5, 2, 4} ∧X3 ∈ {5, 2, 4} ∧X1 < X2 ∧X2 < X3.

Efficiency of the proposed solutions strongly depends in general on how ef-
ficiently the constraint solver can handle the involved constraints. For instance,
if the constraints generated in Example 7 are solved by using a simple gener-
ate & test approach, computational complexity of the proposed solution is in
O(n!) and it is clearly unacceptable even for extremely small n. Conversely, if
the solver can exploit the efficient techniques used to solve finite domain (FD)
constraints (see, e.g., [10] for an overview), the computational behavior of the
proposed solution is in O(2n) (the assignments of values to variables that the
solver has to test constitute paths of a binomial tree), and this is more accept-
able, at least for small values of n. This behavior is obtained in JSetL by simply
replacing the membership constraint in by a constraint dom in the first while

statement4, and adding the posting of the label constraint over the variables in
lOrd, i.e., solver.add(lOrd.label()), before calling the check method. With
the new solution, values will be assigned one by one to the unbound variables
by the label constraint and propagation will shrink the domains of the involved
variables consequently, until all the domains get reduced to singletons.

Sometimes it may be convenient to reformulate the problem solution in or-
der to exploit the more efficient constraint solving techniques made available
by the constraint solver. For example, the simple but very inefficient solution

4 The semantics of x.dom(s) is the same as that of the membership constraint
x.in(s), but solving the former simply updates the domain of x to s, whereas
the latter (non-deterministically) assigns all values in s to x.

78

to the coloring problem of Example 4 can be replaced by a slightly more com-
plex but much more efficient solution that exploits inequality constraints and
FD constraint solving. The only differences w.r.t. the previous version are that
colors are represented by integers and the set of all regions (actually, a partially
specified set containing one logical variable for each region in the map) is passed
explicitly to the method coloring. The idea is to state that the domain of each
variable representing a region is the set of colors, and then to post the constraints
that specify that the two regions in each pair of the map must be distinct.

However, it is important to note that, generally speaking, execution efficiency
is not a primary requirement when using the kind of partially specified collections
we are considering in this paper. Actually, easiness of problem modelling, as well
as easiness of program development and understanding, are definitively more
important features in this context.

5 Set Constraints

In Section 4 we have considered constraints over the elements of a (partially
specified) collection. However, logical variables can range over the domain of
collections as well (e.g., sets), and constraints can apply to whole collections.
Various proposals exist in the literature that take into account this kind of
constraints (see [12] for a survey). In particular, set constraints [11] are based
on set variables whose domain is a finite collection of sets of integers, usually
specified as a set interval [l, u] representing the lattice of sets induced by the
subset partial ordering relation ⊆ having sets l and u as the greatest lower bound
and the least upper bound, respectively.

Implementations of set constraints solvers are provided, e.g., by ECLiPSe [4],
B-Prolog [20], Mozart-Oz [15], and Choco [3]. All these proposals consider only
completely specified sets, whose elements are usually restricted to integer values.

However, as shown in previous sections, it may be useful in many occasions
to allow also partially specified collections to be taken into account. As a matter
of fact, this could significatively enhance the problem modelling capabilities. For
example, if we want to say that s is a set containing at least the element 1 but
not containing 0 we could simply state this as

S = {1 |R} ∧ 0 6∈ S
that is, by using an open partially specified set and a non-membership (set)
constraint over it.

Though partially specified, it may nevertheless be convenient to perform
various operations on the (whole) collections. The case of equality over partially
specified lists and sets has already been discussed in Section 3, where it is re-
conduct to list/set unification. Other operations, such as membership, inclusion,
union, intersection, cardinality, and so on, could be conveniently applied to par-
tially specified collections as well. For example, in the above example, we could
want to say also that the intersection between the set S and another set T must
be empty, i.e., S ∩ T = ∅.

79

The ability to process such operations on partially specified collections re-
quire to deal with them as constraints and to have a constraint solver that is
able to properly account for possibly unbound variable occurring within the col-
lections. Such a solver could be able, in particular, to detect unsatisfiability of
the given constraint even if the involved collections are only partially known,
possibly leading in this way to significatively cut the search space. With refer-
ence to the above example, if we further require that the set T contains the set
{1}, that is:

S = {1 |R} ∧ 0 6∈ S ∧ S ∩ T = ∅ ∧ T ⊆ {1}
the solver could be able to immediately detect that the constraint is unsatisfiable.

A complete solver for these kind of constraints, specifically constraints over
partially specified sets, is provided by {log} [6, 7, 5]. A Java implementation of
this solver is also made available in the context of the Java language by the JSetL
library. Obviously solving this kind of constraints turns out to be in general
much more inefficient than solving set constraints over only completely specified
sets. Moreover, as it happens with set unification, the solution of many of these
constraints may involve non-determinism.

The following are a few examples of the resolution of simple constraints over
either open or closed partially specified sets in JSetL.

Example 8. Partially specified set constraints.

LVar x = new LVar();

IntLVar n = new IntLVar();

LSet r = new LSet();

LSet s1 = LSet.empty().ins(1); // s1 = {1}
LSet s2 = LSet.empty().ins(2).ins(x); // s2 = {x,2}
LSet s3 = r.ins(1).ins(x); // s3 = {x,1 | r}

– Solving the constraint

solver.solve(r.inters(s1,s2)); // r = s1 ∩ s2

we get the two distinct answers: x 6= 1 ∧ r = {} and x = 1 ∧ r = {1}.
– Solving the constraint

solver.solve(s2.size(n)); // n = |s2 |
we get the two distinct answers: x 6= 2 ∧ n = 2 and x = 2 ∧ n = 1.

– Solving the constraint

solver.solve(s3.ncontains(0)); // 0 6∈ s3

we get: x 6= 0 ∧ 0 6∈ r; if we would consider in addition the constraint 1 6∈ s3
then we would get an immediate failure.

The ability to deal with collections whose elements can be of any type (not
only integers) allows one to account also for collections containing other collec-
tions as their elements, i.e., nested collections. Moreover, the inner collections
can be partially specified collections or even unbound logical lists/sets. For ex-
ample, the object ss, which is created by the following two Java statements
using JSetL:

LSet r = new LSet();

80

LSet ss = new LSet().ins(r);

represents any set containing at least another (nested) set r. As a more concrete
example, if we want to model a system composed of at least k pieces, each of
which has a name ni, a quantity qi and a unit cost ci, and if we assume that the
name and cost of each piece are known, whereas its quantity is unknown, we can
represent such a system by the following partially specified set of lists (actually
triples):
{["n1",c1,q1],...,["nk",ck,qk] | r}

where q1, . . . , qk are unbound integer logical variables and r is an unbound
logical set variable. Then we can post constraints either on the integer logical
variables qi (e.g., qi.in(1,10)), or on the set variable r or on the set repre-
senting the whole system (e.g., r.contains(["o",c,q]), c, q unbound logical
variables).

6 Discussion and related work

Logic variables are a key feature of languages/libraries to support constraint
programming. However, in the context of conventional programming languages,
logical variables are rarely exploited to support further possibilities, such as:

– in conjunction with unification, to allow the same code to be used for different
purposes, e.g., to test a given condition or to compute those values for which
the condition holds (procedure invertibility);

– to allow partially specified collections to be represented and handled, possibly
by using suitable constraints.

As concerns procedure invertibility, one exception is the language Alma-0 [1]
which explicitly considers it by providing a generalized test expression (which
becomes an assignment in the case one side is un unbound variable and the
other side is an expression with a known value) and suitable parameter passing
mechanisms.

As concerns partially specified collections, languages/libraries that support
constraint programming in the context of conventional programming usually
allow logic variables to occur in compound data structures. For instance, Alma-
0 allows the user to define arrays of (possibly unbound) logical variables, and it
allows the programmer to deal with them by a few global constraints such as
the ALL DIFFERENT constraint. However, no one of these proposals does really
consider these structures as partially specified data and provide operations to
deal with them accordingly.

Of course, partially specified collections can be defined in the formal lan-
guages provided by generic proof assistants such as Coq [2] and Isabelle [16] and
manipulated as such by using their primitive facilities. However, these tools are
hardly exploitable from within conventional O-O languages such as Java, in the
manner we have shown in this paper.

As concerns efficiency, we have no precise empirical assessment with respect
to Prolog systems where unification and backtracking are primitive mechanisms

81

(actually, as already mentioned, performance is not our main concern). How-
ever, unification, constraint solving and (embedded) backtracking can, at least
in principle, be implemented within the library as efficiently as they are imple-
mented in Prolog systems. With this respect, there is no price to pay for inte-
grating concepts from logical programming into Java. Conversely, user-defined
non-deterministic procedures, that can be defined in JSetL by exploiting the
user-defined constraint facility [18], are likely to be much more inefficient in
JSetL than in Prolog.

7 Conclusions

In this paper we have presented the potential offered by the presence of partially
specified collections, in particular, lists and sets, in a conventional O-O pro-
gramming language. Usefulness of partially specified collections in declarative
programming languages is widely accepted. We have shown that introducing
this kind of data abstractions in a more conventional programming setting is
feasible and offers several potential advantages. To support our claim we have
presented a number of simple examples written in Java using JSetL, a general-
purpose library that provides general forms of data collections.

Although we have considered only lists and sets, there are a number of other
kinds of data collections, akin to lists and sets, which are often provided by
programming languages and libraries and which could be allowed to be partially
specified. The solutions and techniques described in this paper could be adapted
to these other data collections as well. In particular, a formal characterization of
(possibly partially specified) multisets, i.e., unordered collections where element
repetitions are allowed, and the definition of suitable solving procedures for
equality and inequality constraints over them can be found in [9].

A weak point of our library-based approach is that the notation, necessary
to respect the syntax of Java, is much heavier than what one would like to see.
A preprocessor is under development at present to remedy, at least partially,
this problem. No real extension to the Java syntax is required but a smart use
of comments. Using the preprocessor, it will be possible for instance to create a
set by using a sort of set literal, such as LSet s1 = new LSet(/*{1,2,3}*/).

As a future work, we plan to compare the proposed approach with lazy data
structures as those provided, e.g., by the Scala language [17], that seem to have
interesting similarities with our partially specified structures. However, a strict
requirement of our work is to use a library-based approach. This approach has the
undeniable advantage of being easier to develop and more likely to be accepted by
the (rather conservative) programmers. On the other hand, integration between
the considered data abstractions and the rest of the language is weaker in our
proposal than in an extended language, such as Alma-0 or Scala, where the
desired abstractions are added as first-class citizen of the language.

82

References

1. Apt, K.R., Schaerf, A. Programming in Alma-0, or Imperative and Declarative
Programming Reconciled. In D. M. Gabbay and M. de Rijke, Eds., Frontiers of
Combining Systems 2, 1–16, Research Studies Press Ltd (2000)

2. Bertot, Y., Castéran, P. Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. Springer, 469 pages (2004)

3. Choco. http://www.emn.fr/z-info/choco-solver/.
4. ECLiPSe The ECLiPSe Constraint Logic Programming System. London. http:

//eclipseclp.org/.
5. Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. Integrating Finite Domain

Constraints and CLP with Sets. In Miller, D., Ed., Fifth ACM-SIGPLAN Int’l
Conf. on Principles and Practice of Declarative Programming, ACM Press, 219–
229 (2003)

6. Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G. {log}: A Language for
Programming in Logic with Finite Sets. Journal of Logic Programming, 28(1):1–
44 (1996)

7. Dovier, A., Piazza, C., Pontelli, E., and Rossi, G. Sets and Constraint Logic
Programming. ACM Transactions on Programming Languages and Systems,
22(5):861–931 (2000)

8. Dovier, A., Pontelli, E., and Rossi, G. Set unification. Theory and Practice of
Logic Programming, 6:645–701 (2006)

9. Dovier, A., Piazza, C., and Rossi G. A uniform approach to constraint-solving
for lists, multisets, compact lists, and sets. ACM Transactions on Computational
Logic, 9(3):1–30 (2008)

10. Henz, M., Müller, T. An Overview of Finite Domain Constraint Programming
Proceedings of the Fifth Conference of the Association of Asia-Pacific Operational
Research Societies, Singapore (2000)

11. Gervet, C. Interval Propagation to Reason about Sets: Definition and Implemen-
tation of a Practical Language. Constraints, 1(3):191–244, (1997)

12. Gervet, C. Constraints over Structured Domains. In Rossi, F., van Beek, P., and
Walsh, T., Eds., Handbook of Constraint Programming, Elsevier (2006)

13. ILOG ILOG Solver 6.0 Reference Manual (2003)
14. JSR-331, Java Constraint Programming API (Early Draft). Java Community Pro-

cess. http://www.jcp.org (2010)
15. The Mozart Consortium. The Mozart programming system. http://www.

mozart-oz.org (2006)
16. Nipkow, T., Paulson, L., and Wenzel, M. (2002) Isabelle/HOL. A Proof Assistant

for Higher-Order Logic. LNCS 2283, Springer Verlag, 218 pages.
17. Odersky, M., Spoon, L., and Venners, B. Programming in Scala: a comprehensive

step-by-step guide. Artima Press (2008)
18. Rossi, G., Bergenti, F. Nondeterministic Programming in Java with JSetL. In

Cantone, D., Nicolosi Asmundo, M., eds, CILC 2013: Italian Conference on Com-
putational Logic, CEUR Workshop Proceedings, Vol. 1068, 211-226 (2013)

19. Rossi, G., Panegai, E., and Poleo, E. JSetL: A Java Library for Supporting Declar-
ative Programming in Java. Software-Practice & Experience, 37:115-149 (2007)

20. Zhou, N-F. B-Prolog http://www.probp.com/.

83

