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Abstract. Enumerated collections (e.g. lists, sets, etc.) provided by pro-
gramming languages are usually defined by completely and precisely enu-
merating all their constituent elements. Conversely, in (constraint) logic
programming languages it is common to deal with partially specified col-
lections where either some elements or some parts of the collection are left
unknown. In this paper we claim that partially specified collections (in
particular, lists and sets) can be conveniently exploited in a wider setting,
even in the context of more conventional languages using a library-based
approach. We prove this claim by showing a number of simple examples
using Java and the Java library JSetL.

1 Introduction

Programming languages usually provide several kinds of collections, e.g. array,
string, lists, sets, multi-sets, maps, etc, either as primitive abstractions or pro-
grammed by exploiting the data abstraction facilities of the language itself and
made available to users as standard libraries. For example, sets are a primi-
tive data abstraction in Pascal, SETL and Python, while they are provided as
libraries in C++ and Java.

In this paper we will restrict our attention to enumerated collections only,
that is collections designated by explicitly enumerating its constituting elements.
Hereafter the term collection implicitly refers to enumerated collections.

In imperative programming languages collections need to be always com-
pletely specified whenever we operate on them. This means that all elements of
a collection must be provided and they must have known values. For example,
using the interface Set of java.util, the set {1, 3, 0} can be constructed by
executing the statements

s.add(0); s.add(3); s.add(1);

where s is an object denoting the empty set which can be defined as
Set s = new HashSet();

and HashSet is one of the implementations of the interface Set provided by
java.util. Note that the requirement to be completely specified does not pre-
vent a collection from containing variables, but whenever the collection needs
to be evaluated all variables possibly occurring in it must be replaced by their
actual values.



In contrast, collections in declarative programming languages, such as lists
in Prolog, are allowed to contain unknown elements and to be only partially
specified, and, nevertheless, they can be accessed and manipulated. For instance,
the Prolog predicate [a,b,c] = [X,Y|R] compares the (completely specified)
list of three elements, a, b, and c, with the partially specified list containing
two unknown elements X and Y and an unknown remainder part R (i.e., any list
containing at least two elements).

Usefulness of partially specified collections has been amply demonstrated in
the context of declarative programming languages. In particular, programming
with partially specified lists is a well-assessed technique in standard logic pro-
gramming languages. Partially specified sets, instead, are supplied by extended
logic programming languages with sets, such as [6, 7, 5], and are shown to be
a powerful data abstraction. Usefulness of partially specified sets is advocated
also in specific application areas such as deductive databases, computational
linguistics, and knowledge representation.

Aim of this paper is to show that partially specified collections can be conve-
niently exploited also in a more conventional setting, namely an imperative O-O
programming language. In particular, we consider a library-based approach where
the new data abstractions are defined by using the language data abstraction
mechanisms, without requiring any extension of the host language.

We prove our claim by presenting a number of simple examples written in
Java using JSetL [19], a general-purpose library that supports partially specified
lists and sets, within the O-O language Java. JSetL integrates the notions of
logical (or constrained) variable, (set) unification and constraints that are typical
of constraint logic programming languages into the Java language. In particular,
it allows logical variables to occur in list and set data structures and provides
operations to deal with such objects.

The presented examples aim at showing, in particular, how partially specified
lists and sets can be exploited for:

– supporting a declarative programming style
– providing data modelling tools (in particular sets and set unification) which

prove to be particularly suitable for problems involving non-determinism
– supporting constraint programming.

It is important to note that our main concern here is on providing modelling
and programming support. Conversely we are only relatively little interested
in the efficiency issue (e.g., efficiency of the constraint solver). Furthermore,
our focus is on programming rather than on constraint solving or satisfiability
checking of formulas involving partially specified collections.

Though our discussion is limited to lists and sets, similar considerations could
apply to other kinds of collections as well. Moreover, though we are focusing on
Java, the same considerations could be easily exported to other O-O languages
(such as C++) where these data abstractions could be supplied by libraries,
while they can serve as useful guidelines to devise extensions to programming
languages where these new data abstractions could be provided as primitive
ones.



The paper is organized as follows. Section 2 introduces the notion of partially
specified collection, showing how logical variables can be used within collections
to represent unknown elements or part of the collection. In Section 3 we start
considering operations on partially specified collections, specifically (set) uni-
fication. In Section 4 we show how simple inequality, membership and integer
comparison constraints over elements of partially specified collections can be
used to describe and compute solutions for a number of common programming
problems. Section 5 takes into account also set variables, whose domains are col-
lections of sets, and it briefly shows how set variables and set constraints can be
advantageously exploited in conjunction with partially specified sets. Sections 6
and 7 are devoted to further remarks and to draw some conclusion.1

2 Partially Specified Collections

Declarative programming languages (e.g., functional and logic programming lan-
guages) are based on a notion of variable, often called logical (or mathematical
variables, constrained) variable, that differs from that of imperative program-
ming languages. Logical variables represent unknowns, not memory cells. As
such they have no modifiable value stored in them, as ordinary programming
language variables have. Conversely, one can associate values to logical variables
through relations (or constraints) involving logical variables and values from
some specific domains.

When the domain of a (logical) variable is restricted to a single value then
the variable is said to be bound (or instantiated) to this value. Otherwise, the
variable is unbound. An equality relation, in particular, may restrict the domain
of a logical variable to a single value. For example, if x is a logical variable
ranging over the domain of integers, the equality x = 3 forces x to be bound to
the value 3. However, the same result could be obtained through other relations,
e.g., x < 4 ∧ x > 2. The value of a logical variable is immutable. That is it can
not be changed, e.g. by an assignment statement like in imperative languages.

Logical variables are found also in conventional programming languages that
support constraint programming (e.g., Alma-0 [1]), as well as in libraries for
constraint programming, such as ILOG [13] and Choco [3] (see also the recent
Java Specification Request for a standard Java Constraint Programming API
[14]).

In this paper we will refer to what is provided by JSetL [19], a Java library
that supports declarative (constraint) programming in an O-O framework. In
JSetL a (generic) logical variable is an instance of the class LVar. Basically, LVar
objects can be manipulated through constraints, namely equality (eq), inequality
(neq), membership (in) and not membership (nin) constraints. Moreover the
library provides methods to test whether a variable is bound or not, to get the
value of a bound variable (but not to modify it), to get its external name, and
so on. Values associated with generic logical variables can be of any type. For

1 An extended version of this paper appeared in Computer Languages, Systems &
Structures, Elsevier, vol. 37/4, 178-192, 2011



some specific domains, however, JSetL offers specializations of the LVar data
type, which provide further specific constraints. In particular, for the domain
of integers, JSetL offers the class IntLVar, which extends LVar with a number
of new methods and constraints specific for integers. In particular, IntLVar

provides integer comparison constraints such as <, ≤, etc.
Other important specializations of logical variables are the class LCollection

and its derived subclasses, LSet (for Logical Sets) and LList (for Logical Lists).
Values associated with LSet (LList) are objects of the java.util class Set

(List). A number of constraints are provided to work with LSet (LList), which
extend those provided by LVar. In particular, LSet provides equality and in-
equality constraints that account for the semantic properties of sets (namely, ir-
relevance of order and duplication of elements); moreover it provides constraints
for many of the standard set-theoretical operations, such as union, intersection,
set difference, and so on.

Example 1. Logical lists/sets in JSetL.

LVar x = new LVar(); // an unbound logical variable
LVar y = new LVar("y",1); // a bound logical variable

// with external name "y" and value 1

LList ll = new LList(); // an unbound logical list
LSet ls 1 = new LSet(); // an unbound logical set

A collection where either some elements, or part of the collection itself, are
unbound logical variables represents a partially specified collection. For example
(using a Prolog-like notion), the list [1,X,Y], where X and Y are unbound logical
variables, denotes a partially specified list containing one known element 1 and
two unknown elements, denoted X and Y. As another example, the list [1,2|Z],
where Z is an unbound logical list (i.e., a logical variable ranging over the domain
of lists), designates an open list containing two known elements 1 and 2 and an
unknown remainder part denoted by Z.

A partially specified set (list) can be created in JSetL by adding possibly
unknown elements, i.e., unbound LVar objects, to either a known or an unknown
set (list) using the element insertion operator ins.

Example 2. The two partially specified lists [1,X,Y] and [1,2|Z] can be defined
in JSetL as follows:

LVar X = new LVar();

LVar Y = new LVar();

LList cl = // the closed p.s. list
LList.empty().ins(Y).ins(X).ins(1); // [1,X,Y]

and

LList Z = new LList(); // the open p.s. list
LList ol = Z.ins(2).ins(1); // [1,2 |Z]

JSetL provides a number of facilities, mainly in the form of constraints, to
access and manipulate partially specified lists/sets (e.g., unification). Conversely,



most of the non-CLP languages/libraries mentioned above allow (possibly un-
bound) logical variables to occur in conventional data structures, such as vectors,
but they do not provide any specific operation to deal with them as partially
specified collections. Even languages/libraries that provide set constraints [11],
such as ILOG-Solver [13], Choco [3], and Mozart-Oz [15], do consider only com-
pletely specified sets.

3 (Set) Unification

One of the basic operation to access and manipulate partially specified collections
in logic programming languages is unification. JSetL provides both standard
unification, over LList objects, and set unification, over LSet objects. Both
forms of unification are implemented by the equality method eq. The meaning
of o1.eq(o2) is the unification between the objects o1 and o2. o1 is either a
simple logical variable (i.e., an instance of LVar) or a possibly partially specified
data collection (i.e., an instance of LList or LSet). o2 is either an object of the
same type as o1 or an admissible value for it (i.e., a Set object, an Integer

object, and so on). The following is an example of unification over lists in JSetL.

Example 3. Check whether list l3 is the concatenation of lists l1 and l2. The
problem can be modelled as a (list) unification problem. If the first list l1 is
the empty list, the other two lists must be unifiable (and vice versa). Otherwise,
the given lists must satisfy the constraint (using a Prolog-like abstract nota-
tion) l1 = [x | l1new] ∧ l3 = [x | l3new], where l3new is the concatenation of
the “shorter” list l1new and the given list l2, and equality = represents unifi-
cation.

public static boolean concat(LList l1, LList l2, LList l3) {
if ( solver.check(l1.eq(Lst.empty()).and(l2.eq(l3))) )

return true;
else {

LVar x = new LVar();

LList l1new = new LList();

LList l3new = new LList();

return
solver.check(l1.eq(l1new.ins(x)).and(l3.eq(l3new.ins(x))))

&& concat(l1new,l2,l3new);

}
}

The first call to the method check tests satisfiability of the constraint l1 =
[] ∧ l2 = l3. solver is an object of the class SolverClass which is assumed
to be created outside the method concat. Solving an equality calls into play
unification: if the two lists are unifiable, then check returns true, otherwise it
returns false. If the constraint l1 = [] ∧ l2 = l3 is false, then the constraint
l1 = [x | l1new] ∧ l3 = [x | l3new] is checked and the result is combined with
the result of the recursive call to concat.



This example shows how the use of a partially specified collection and uni-
fication allows us to devise a truly declarative solution to the given problem.
Another advantage of using unification—in place of assignment and standard
programming variables—is that the same methods can be used both to assign
values to variables and to test known values. In particular, unification over par-
tially specified lists can be used both to access single elements of a list and to
construct the list itself. For example, the method concat can be used either
to test if a list l3 is the concatenation of two given lists l1 and l2 or to get
one list given the other two. No assumption is made about which are input
and which are output parameters. As an example, if l3 is the JSetL LList for
[’d’,’a’,’t’,’a’,’.’,’t’,’x’,’t’], l2 is the JSetL LList for [’.’,’t’,’x’,’t’], and
l1 is an unbound LList, then the invocation concat(l1,l2,l3) binds l1 to the
LList [’d’,’a’,’t’,’a’].

Set unification differs from standard unification in that the former must ac-
count for the properties of sets, namely that order and repetition in a set do
not matter. Thus, for example, the two set unification problems, {a} = {a, a}
and {a, b} = {b, a} have a solution, whereas they would have no solution using
standard unification. A general survey of the problem of unification in presence
of sets, across different set representations and different admissible classes of set
terms, can be found in [8]. The following is a simple example using partially
specified sets and set unification.

Example 4. (Coloring of a map) Given a map of n regions and a set of m col-
ors find an assignment of colors to regions such that neighboring regions have
different colors. To solve this problem we assume to represent the map as a set
whose elements are themselves sets containing two neighboring regions and to
represent each region as a distinct unbound logical variable. Hence, the map is
represented by a partially specified set. For example,

{{r1, r2}, {r2, r3}, {r3, r4}, {r4, r1}}
where r1, r2, r3, r4 are unbound logical variables, is a map of four regions. With
these assumptions, the coloring problem can be modelled as the problem of
unifying the set representing the map with the set of all admissible unordered
pairs of colors that can be constructed from the given m colors. For example,
given the map considered above and the set of colors {1, 2, 3}, the problem to
be solved turns out to be (using the usual Prolog-like abstract notation):

{{r1, r2}, {r2, r3}, {r3, r4}, {r4, r1} |R} = {{1, 2}, {2, 3}, {1, 3}}
where R represents the set of viable color pairs that possibly have not been used
in the computed solution. One of the many possible solutions to this problem is:

r1 = 1, r2 = 2, r3 = 1, r4 = 3, R = {{2, 3}}.
Using JSetL, the proposed modelling of the coloring problem can be easily im-
plemented in Java by the following method:

public static void coloring(LSet map, LSet colorPairs) {

LSet R = new LSet();

solver.check(colorPairs.eq(R.insAll(map)));

}



where R.insAll(map)) is the set containing all elements of the set map and an
unknown part R, and colorPairs is the set of all admissible unordered pairs of
colors. This set can be constructed “by hand” or it can be computed starting
from the set of colors by exploiting set unification in a way similar to the one
shown in Example 5.

The coloring example shows that the use of partially specified sets and set
unification allows us to devise very concise and declarative—though possibly
inefficient—solutions.2

A key feature of unification over partially specified sets is the non-determinism
embedded in the set unification algorithm. As a matter of fact, a set unification
problem may have more than one (independent) solution (non-uniqueness of
mgu’s). For example, {X,Y } = {a, b}, where X and Y are unbound variables,
has two solutions, namely (i) X = a, Y = b and (ii) X = b, Y = a. The set uni-
fication algorithm can compute all these solutions, one after the other, through
backtracking. The following is an example that shows how to exploit this feature
within a Java program.

Example 5. (Permutations) Print all permutations of the integer numbers from 1
to n (n ≥ 0). The problem can be modelled as the problem of unifying a (partially
specified) set of n logical variables {X1, . . . , Xn} with the set of the integer
numbers from 1 to n, i.e., {X1, . . . , Xn} = {1, . . . , n}. Each solution to this
problem yields an assignment of (distinct) values to variables X1, . . . , Xn that
represents a possible permutation of the integers between 1 and n. The following
method allPermutations implements this solution in Java using JSetL.

public static void allPermutations(int n) {
IntLSet I = new IntLSet(1,n); // I = {1,2,. . . ,n}
LSet S = LSet.mkLSet(n); // S = {X1,X2,. . . ,Xn}
solver.add(S.eq(I)); // {X1,X2,. . . ,Xn} = {1,2,. . . ,n}
solver.check();

do {
S.printElems(’ ’);

System.out.println();

} while (solver.nextSolution());

}

The invocation LSet.mkLSet(n) creates a set composed of n unbound logical
variables. This set is unified, through the constraint eq, with the set of n integers
I. The method add allows a constraint to be added to the constraint store of
the specified solver. Constraints stored in the constraint store can be checked
for satisfiability by calling the constraint solving procedure of the solver, e.g. by
invoking the method check(). Calling the method nextSolution() allows to
check whether the constraint in the constraint store of the current solver admits
further solutions and possibly to compute the next one. Finally, the invocation

2 An alternative, more efficient, solution of the coloring problem using constraints will
be hinted at in the next section.



s.printElems(’ ’) prints all elements of the set s on the standard output
separated by the specified character (blank in this case).

This example also illustrates the interplay between Java statements and the
non-determinism mechanism embedded in the JSetL constraint solving proce-
dure. In particular, using the method nextSolution() within an iterative state-
ment such as the do while construct provides a simple way to compute all
possible solutions for a given problem. As a matter of fact, nextSolution()

exploits the backtracking mechanism embedded in the constraint solver: calling
nextSolution() forces the computation to go back until the nearest open choice
point. In this example the choice points are created during execution of the set
unification algorithm called into play by solving the equality constraint between
the two sets I and S.

Remark 1. The set unification problem has been proved to be a NP-complete
problem. This may lead, in general, to an exponential growth in the complex-
ity of the satisfaction procedure used in JSetL. However, the full power of set
unification is not always required. As an example, in the problem of Example 5
we can observe that one of the two sets is completely known (the set I), while
the other (the set S) is a closed set of exactly n unbound variables. Thus we
can replace the equality constraint S = I that implements general set unification
with the conjunction of constraints 1 ∈ S∧ 2 ∈ S∧ . . .∧n ∈ S.3 The new version
of the method allPermutations using n membership constraints turns out to
be executed much more efficiently than the previous one.

4 Constrained Partially Specified Collections

Logical variables occurring in partially specified collections can be suitably con-
strained. This allows us, in general, to characterize more precisely the collection
of data structures denoted by a partially specified collection. For example, the
partially specified list [X,Y ], where X and Y are unbound logical variables,
with the additional constraint X > Y , can be used to designate any list of
two elements with the first element greater than the second. The following is
a simple example showing how inequality and membership constraints can be
advantageously exploited in conjunction with partially specified lists.

Example 6. (All pairs) Compute the set of all pairs [x,y] such that both x and
y belong to a given set s and x 6= y.

public static Set<?> allPairs(Set<?> s) {
LVar x = new LVar();

LVar y = new LVar();

LList pair = new LList.empty().ins(y).ins(x)); // a pair [x,y]
solver.add(x.in(s).and(y.in(s)).and(x.neq(y)));

return solver.setOf(pair);

}
3 Note that S has fixed cardinality, which prevents it from containing other values

other than 1..n.



The first four statements serve to specify the form of the pairs we are looking
for: partially specified lists of the form [x,y], with x ∈ s ∧ y ∈ s ∧ x 6= y. The
last statement calls the method setOf of the current solver which collects in a
Java set all the pairs satisfying this specification and returns it as its result.

This example shows an interesting interaction between partially specified col-
lections (namely, JSetL logical lists), containing logical variables, and completely
specified collections (namely, sets and lists of java.util). The latter are used
to contain known values, while the former are used to describe the general form
of values to be computed.

The method setOf implements a (limited) form of intensionally defined sets.
A set s is defined as the set of all possible values of a variable x for which a
condition ϕ, involving x, turns out to be satisfied, i.e. s = {x : ϕ}. If ϕ is
represented as a JSetL constraint, the set collection can be easily performed by
using setOf() over this constraint. As a matter of fact, the set s computed in
the above example is the set { [x, y] : x ∈ s ∧ y ∈ s ∧ x 6= y}.

The same effect can be obtained more explicitly by combining iteration and
nextSolution(), similarly to Example 5. Specifically, the call to the method
setOf in Example 6 can be replaced by the following code fragment:

Set pairSet = new HashSet();

solver.check();

do {
pairSet.add(pair.getValue());

} while (solver.nextSolution());

In this solution each computed pair is explicitly added to the set of all solu-
tions s by using the (destructive) add method of Java sets. Collecting all solutions
in a data structure such as s—instead of simply printing them as in Example
5—allows the program to subsequently work on them using operations provided
by that data structure.

In the next example we make use of a list of constrained integer logical
variables to represent the solution we are looking for. Assigning possible values
to these variables will allow us to obtain all the admissible solutions for the given
problem (actually, only one solution in the considered example).

Example 7. (Sort) Sort a collection of n distinct integer numbers in ascending
order. The problem can be modelled as a finite domain constraint satisfaction
problem in the following way. Let s be the Set object representing the collection
to be ordered, and lOrd be a list of n integer logical variables Xi, i = 1 . . . n.
Variables in lOrd are constrained so that each Xi has domain s and the following
conjunction holds:

∧n−1
i=1 Xi < Xi+1. Then a solution to this problem is computed

by finding the instance of lOrd (i.e., an assignment of values to all its variables)
that satisfies the given constraint. This modelling of the sorting problem is easily
implemented in Java using JSetL by the following method:

public static List sortList(Set s) {
int n = s.size();



IntLList lOrd = IntLList.mkLList(n); // lOrd = [X1,X2,. . . ,Xn]
Iterator it = lOrd.iterator(); // it = Iterator over LList
while(it.hasNext()) // ∀i ∈ 1..n, Xi.in(s)

solver.add((((IntLvar)it.next()).in(s)));

for(int i=0; i<n-1; i++) // ∀i ∈ 1..n, Xi.lt(Xi+1)
solver.add(((IntLvar)lOrd.get(i)).lt((IntLvar)lOrd.get(i+1)));

solver.check();

return lOrd.getValue();

}

The invocation IntLList.mkLList(n) creates a partially specified list composed
of n integer logical variables (IntLList is a subclass of LList where list ele-
ments are restricted to be integers—either constants or logical variables of type
IntLVar). The while statement allows membership constraints to be added to
the constraint store of the constraint solver solver for each variable of the list
ordList. The next for statement adds the lt constraints that force values for
the variables in ordList to be assigned respecting the desired ordering relation
(namely, <). These constraints, along with the membership constraints posted
before, are checked for satisfiability through the method check(). Finally, the
Java list representing the value of the logical list ordList is obtained by invoking
the method getValue and returned as the final result of the method sortList.
As an example, if s is the set {5, 2, 4}, the constraint to be solved is

X1 ∈ {5, 2, 4} ∧X2 ∈ {5, 2, 4} ∧X3 ∈ {5, 2, 4} ∧X1 < X2 ∧X2 < X3.

Efficiency of the proposed solutions strongly depends in general on how ef-
ficiently the constraint solver can handle the involved constraints. For instance,
if the constraints generated in Example 7 are solved by using a simple gener-
ate & test approach, computational complexity of the proposed solution is in
O(n!) and it is clearly unacceptable even for extremely small n. Conversely, if
the solver can exploit the efficient techniques used to solve finite domain (FD)
constraints (see, e.g., [10] for an overview), the computational behavior of the
proposed solution is in O(2n) (the assignments of values to variables that the
solver has to test constitute paths of a binomial tree), and this is more accept-
able, at least for small values of n. This behavior is obtained in JSetL by simply
replacing the membership constraint in by a constraint dom in the first while

statement4, and adding the posting of the label constraint over the variables in
lOrd, i.e., solver.add(lOrd.label()), before calling the check method. With
the new solution, values will be assigned one by one to the unbound variables
by the label constraint and propagation will shrink the domains of the involved
variables consequently, until all the domains get reduced to singletons.

Sometimes it may be convenient to reformulate the problem solution in or-
der to exploit the more efficient constraint solving techniques made available
by the constraint solver. For example, the simple but very inefficient solution

4 The semantics of x.dom(s) is the same as that of the membership constraint
x.in(s), but solving the former simply updates the domain of x to s, whereas
the latter (non-deterministically) assigns all values in s to x.



to the coloring problem of Example 4 can be replaced by a slightly more com-
plex but much more efficient solution that exploits inequality constraints and
FD constraint solving. The only differences w.r.t. the previous version are that
colors are represented by integers and the set of all regions (actually, a partially
specified set containing one logical variable for each region in the map) is passed
explicitly to the method coloring. The idea is to state that the domain of each
variable representing a region is the set of colors, and then to post the constraints
that specify that the two regions in each pair of the map must be distinct.

However, it is important to note that, generally speaking, execution efficiency
is not a primary requirement when using the kind of partially specified collections
we are considering in this paper. Actually, easiness of problem modelling, as well
as easiness of program development and understanding, are definitively more
important features in this context.

5 Set Constraints

In Section 4 we have considered constraints over the elements of a (partially
specified) collection. However, logical variables can range over the domain of
collections as well (e.g., sets), and constraints can apply to whole collections.
Various proposals exist in the literature that take into account this kind of
constraints (see [12] for a survey). In particular, set constraints [11] are based
on set variables whose domain is a finite collection of sets of integers, usually
specified as a set interval [l, u] representing the lattice of sets induced by the
subset partial ordering relation ⊆ having sets l and u as the greatest lower bound
and the least upper bound, respectively.

Implementations of set constraints solvers are provided, e.g., by ECLiPSe [4],
B-Prolog [20], Mozart-Oz [15], and Choco [3]. All these proposals consider only
completely specified sets, whose elements are usually restricted to integer values.

However, as shown in previous sections, it may be useful in many occasions
to allow also partially specified collections to be taken into account. As a matter
of fact, this could significatively enhance the problem modelling capabilities. For
example, if we want to say that s is a set containing at least the element 1 but
not containing 0 we could simply state this as

S = {1 |R} ∧ 0 6∈ S

that is, by using an open partially specified set and a non-membership (set)
constraint over it.

Though partially specified, it may nevertheless be convenient to perform
various operations on the (whole) collections. The case of equality over partially
specified lists and sets has already been discussed in Section 3, where it is re-
conduct to list/set unification. Other operations, such as membership, inclusion,
union, intersection, cardinality, and so on, could be conveniently applied to par-
tially specified collections as well. For example, in the above example, we could
want to say also that the intersection between the set S and another set T must
be empty, i.e., S ∩ T = ∅.



The ability to process such operations on partially specified collections re-
quire to deal with them as constraints and to have a constraint solver that is
able to properly account for possibly unbound variable occurring within the col-
lections. Such a solver could be able, in particular, to detect unsatisfiability of
the given constraint even if the involved collections are only partially known,
possibly leading in this way to significatively cut the search space. With refer-
ence to the above example, if we further require that the set T contains the set
{1}, that is:

S = {1 |R} ∧ 0 6∈ S ∧ S ∩ T = ∅ ∧ T ⊆ {1}
the solver could be able to immediately detect that the constraint is unsatisfiable.

A complete solver for these kind of constraints, specifically constraints over
partially specified sets, is provided by {log} [6, 7, 5]. A Java implementation of
this solver is also made available in the context of the Java language by the JSetL
library. Obviously solving this kind of constraints turns out to be in general
much more inefficient than solving set constraints over only completely specified
sets. Moreover, as it happens with set unification, the solution of many of these
constraints may involve non-determinism.

The following are a few examples of the resolution of simple constraints over
either open or closed partially specified sets in JSetL.

Example 8. Partially specified set constraints.

LVar x = new LVar();

IntLVar n = new IntLVar();

LSet r = new LSet();

LSet s1 = LSet.empty().ins(1); // s1 = {1}
LSet s2 = LSet.empty().ins(2).ins(x); // s2 = {x,2}
LSet s3 = r.ins(1).ins(x); // s3 = {x,1 | r}

– Solving the constraint

solver.solve(r.inters(s1,s2)); // r = s1 ∩ s2

we get the two distinct answers: x 6= 1 ∧ r = {} and x = 1 ∧ r = {1}.
– Solving the constraint

solver.solve(s2.size(n)); // n = |s2 |
we get the two distinct answers: x 6= 2 ∧ n = 2 and x = 2 ∧ n = 1.

– Solving the constraint

solver.solve(s3.ncontains(0)); // 0 6∈ s3

we get: x 6= 0 ∧ 0 6∈ r; if we would consider in addition the constraint 1 6∈ s3
then we would get an immediate failure.

The ability to deal with collections whose elements can be of any type (not
only integers) allows one to account also for collections containing other collec-
tions as their elements, i.e., nested collections. Moreover, the inner collections
can be partially specified collections or even unbound logical lists/sets. For ex-
ample, the object ss, which is created by the following two Java statements
using JSetL:

LSet r = new LSet();



LSet ss = new LSet().ins(r);

represents any set containing at least another (nested) set r. As a more concrete
example, if we want to model a system composed of at least k pieces, each of
which has a name ni, a quantity qi and a unit cost ci, and if we assume that the
name and cost of each piece are known, whereas its quantity is unknown, we can
represent such a system by the following partially specified set of lists (actually
triples):
{["n1",c1,q1],...,["nk",ck,qk] | r}

where q1, . . . , qk are unbound integer logical variables and r is an unbound
logical set variable. Then we can post constraints either on the integer logical
variables qi (e.g., qi.in(1,10)), or on the set variable r or on the set repre-
senting the whole system (e.g., r.contains(["o",c,q]), c, q unbound logical
variables).

6 Discussion and related work

Logic variables are a key feature of languages/libraries to support constraint
programming. However, in the context of conventional programming languages,
logical variables are rarely exploited to support further possibilities, such as:

– in conjunction with unification, to allow the same code to be used for different
purposes, e.g., to test a given condition or to compute those values for which
the condition holds (procedure invertibility);

– to allow partially specified collections to be represented and handled, possibly
by using suitable constraints.

As concerns procedure invertibility, one exception is the language Alma-0 [1]
which explicitly considers it by providing a generalized test expression (which
becomes an assignment in the case one side is un unbound variable and the
other side is an expression with a known value) and suitable parameter passing
mechanisms.

As concerns partially specified collections, languages/libraries that support
constraint programming in the context of conventional programming usually
allow logic variables to occur in compound data structures. For instance, Alma-
0 allows the user to define arrays of (possibly unbound) logical variables, and it
allows the programmer to deal with them by a few global constraints such as
the ALL DIFFERENT constraint. However, no one of these proposals does really
consider these structures as partially specified data and provide operations to
deal with them accordingly.

Of course, partially specified collections can be defined in the formal lan-
guages provided by generic proof assistants such as Coq [2] and Isabelle [16] and
manipulated as such by using their primitive facilities. However, these tools are
hardly exploitable from within conventional O-O languages such as Java, in the
manner we have shown in this paper.

As concerns efficiency, we have no precise empirical assessment with respect
to Prolog systems where unification and backtracking are primitive mechanisms



(actually, as already mentioned, performance is not our main concern). How-
ever, unification, constraint solving and (embedded) backtracking can, at least
in principle, be implemented within the library as efficiently as they are imple-
mented in Prolog systems. With this respect, there is no price to pay for inte-
grating concepts from logical programming into Java. Conversely, user-defined
non-deterministic procedures, that can be defined in JSetL by exploiting the
user-defined constraint facility [18], are likely to be much more inefficient in
JSetL than in Prolog.

7 Conclusions

In this paper we have presented the potential offered by the presence of partially
specified collections, in particular, lists and sets, in a conventional O-O pro-
gramming language. Usefulness of partially specified collections in declarative
programming languages is widely accepted. We have shown that introducing
this kind of data abstractions in a more conventional programming setting is
feasible and offers several potential advantages. To support our claim we have
presented a number of simple examples written in Java using JSetL, a general-
purpose library that provides general forms of data collections.

Although we have considered only lists and sets, there are a number of other
kinds of data collections, akin to lists and sets, which are often provided by
programming languages and libraries and which could be allowed to be partially
specified. The solutions and techniques described in this paper could be adapted
to these other data collections as well. In particular, a formal characterization of
(possibly partially specified) multisets, i.e., unordered collections where element
repetitions are allowed, and the definition of suitable solving procedures for
equality and inequality constraints over them can be found in [9].

A weak point of our library-based approach is that the notation, necessary
to respect the syntax of Java, is much heavier than what one would like to see.
A preprocessor is under development at present to remedy, at least partially,
this problem. No real extension to the Java syntax is required but a smart use
of comments. Using the preprocessor, it will be possible for instance to create a
set by using a sort of set literal, such as LSet s1 = new LSet(/*{1,2,3}*/).

As a future work, we plan to compare the proposed approach with lazy data
structures as those provided, e.g., by the Scala language [17], that seem to have
interesting similarities with our partially specified structures. However, a strict
requirement of our work is to use a library-based approach. This approach has the
undeniable advantage of being easier to develop and more likely to be accepted by
the (rather conservative) programmers. On the other hand, integration between
the considered data abstractions and the rest of the language is weaker in our
proposal than in an extended language, such as Alma-0 or Scala, where the
desired abstractions are added as first-class citizen of the language.
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