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Abstract. Refining a B specification into an implementation can be a complex 

and time consuming process. This process can usually be separated in two 

distinct parts: the specification part, where refinement is used to introduce new 

properties and specification details, and the implementation, where refinement 

is used to convert a detailed B specification into a B0 implementation. This 

article presents experience on the development and use of a refiner tool that 

automates the production of implementable models, in a number of industrial 

applications.  
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1   Introduction 

Historically, the B Method [1] was introduced in the late 80’s to design correct by 

construction, safe software. B and Atelier B1, the tool implementing it, have been 

successfully applied to the industry of transportation with the development of large 

size embedded software [2], [3], [4], [10] and to a lesser extent to other application 

domains [5], [7], [11], [12], [13], [15], [16]. Based on the notion of refinement, the B 

method allows writing software specification and implementation by using the same 

formal language. Specification is progressively transformed (refined) into 

implementation by adding algorithmic details and/or transforming abstract data types 

into concrete (implementable) ones. If the specification is the result of a purely human 

activity, the refinement process could be automated as it consists in a sequence of 

transformations applied to the specification in order to obtain an implementable 

model. 

In this article, we expose our return of experience on applying automatic 

refinement in industry, through a number of industrial applications. In section 2, an 

overview of refinement in B is given. Automatic refinement key concepts and tooling 

are presented in section 3. Section 4 exposes industrial applications of automatic 

refinement. Finally section 5 concludes and discusses further work. 

                                                           
1 http://www.atelierb.eu/ 



2   Refining in B 

The B method is mainly aimed at software development. B models are structured in 

components: a component is usually2 made of a specification model and an 

implementation model (the implementation being a refinement of the specification).  

 

 
 

Figure 1: structure of B specification and implementation 

 

An implementation may use other specification models by calling their operations 

(related models are imported) or by having a read access to the value of variables and 

constants (related models are seen). A B model is made of variables, constants and 

operations that modify the variables3. Variables and constants have types and 

constraints linking some variables and constants can be expressed (called invariant for 

variables and properties for constants). Variables and constants can be either abstract 

or concrete. Operations are defined with substitutions [8] that can either be 

deterministic or non-deterministic. Depending of the nature of the model, 

substitutions used to describe operations are restricted: for example, sequencing is 

forbidden in specifications, as well as loops, and non-determinism is forbidden in 

implementations. 

 

Major restrictions on B modelling are: 

 [R1] The obligation to have a concrete variable implemented in one and 

only one implementation (it couldn’t be modified at two different places). 

This constraint has a major impact on the structure of B projects: 

dataflow has to be considered first before defining the components.  

 [R2] The imports graph must be a tree (see Figure 2): each concrete 

module except the tree root must be imported in the project to insure that 

the properties proved locally still hold at global level. 

 

                                                           
2 Other cases are: (1) Basic machines have no B implementation as they are used to connect B 

models with third party software (2) Several successive refinements might be necessary to 

obtain implementation. 
3 Model initialisation is also considered as an operation. However it can be executed only once 

and variables properties have to be set after this execution. 



 

Figure 2: incorrect imports graphs 

 
 [R3] The dependency graph must not have any cycle. In this case, it 

would not have any valid order of initialisation. 

 

 

Figure 3: incorrect dependency graph 

 [R4] An operation defined in the specification of a component can’t be 

used in the implementation of this component. It has to be called in 

another implementation that imports this component. This constraint 

requires adding extra-layers in the B project. 

 

On the other hand, this modular decomposition based on specification importation 

allows proving the models more easily as it breaks down proof complexity and 

factorizes the proof of operations. Models are also considered as easier to read and to 

understand. 

 

As an example, let us consider the example shown in Figure 4. The specification 

(machine M) declares a variable setv, typed as a subset of 1..10. This variable is 

initialized as empty. Obviously this variable can’t be implemented as it is. Sets are 

often refined by using a table (a function) that associates to each element of the 

domain (here the interval 1..10) a Boolean value indicating if the element belongs to 

the set. In this example, the new variable bitv is declared as a total function from the 

interval 1..10 to BOOL.  

The gluing invariant  

setv = bitv-1[{TRUE}] 

establishes a direct relation between the variable setv (that doesn’t exist anymore in 

refinement M_r) and the variable bitv: all elements for which bitv is valued as TRUE 

belong to setv. Initialisation has also to comply with this gluing invariant: setv being 

initialised as empty, bitv has to be initialised with all elements associated to FALSE. 



 

 

Figure 4: example of specification and refinement 

3   B Automatic Refinement 

 
Rationale. Automatic refinement has been initially imagined [6], developed and put 

into existence by Matra Transport with the automated “Canarsie line” metro in New-

York [9]. By abstract model (see Figure 5), we do not mean the collection of all 

specification models of the project but a selection of related top level components, 

including specification, refinement and implementation models, that capture the 

specification of the software. This specification is abstract but contains all details: it 

just needs to be transformed into an implementable model. 

 

Figure 5: separation between abstract model and concrete model 

 

Automatic refinement is aimed at automatically generating the concrete model (or 

part of it) from the abstract model, with the objective to dramatically reduce 

development costs. Indeed, safety critical software usually requires twice the 

workload because of additional testing, verification and validation. Automatic 



refinement is aimed at reducing the workload by up to half as the concrete model is 

automatically generated and the model is easier to validate. Finally safety critical 

software would only require the budget of a non-safety critical software development 

to complete. 

 

Concepts. The main concept is the automatic building of the concrete model by 

applying refinement patterns step by step, the refinement patterns being expressed as 

refinement rules. The data (variables) are refined first. The substitutions are then 

refined.  

Abstract model is usually constructed with abstract data typed as set, partial function, 

relation, etc. As B0 model only allows concrete data type as scalar, total function, 

etc., data refinement consists in replacing abstract data with more concrete one : this 

needs to introduce a gluing invariant describing how abstract variable becomes 

concrete. Data refinement can be done in several steps: not directly from abstract to 

concrete but with intermediate data representation. Data can already be concrete but 

be refined in order, for instance, to reduce the memory footprint. In principle, the 

choice of a refinement for a variable is done regarding its initialisation and operations 

manipulating this variable. In practice, the choice is done regarding the type of the 

variable. However types for concrete variables are limited, B0 initialisation is limited 

too. To automate the data refinement, refinement patterns are given describing the 

constraints that have to be fulfilled by refined data, the introduced refining variable, 

and gluing invariant. Then the automatic refiner chooses a refinement pattern 

regarding the properties of the variables. This choice can be modified by the user who 

can add new refinement pattern into the tool. 

 

 

Figure 6: refinement process order 

 

For substitution refinement, treatments on abstract data have to be refined to become 

translatable treatment on concrete data. B0 allowed substitutions are : assignment, IF, 

CASE, and WHILE. Similarly to data refinement, substitution refinement is based on 

refinement patterns that should make explicit under which constraints they can be 

applied, what are the resulting substitutions, and either it is an implementation or it 

should be refined one more time. 

The refinement of a component consists in the 3 successive actions (see Figure 6): 

determining refinement pattern for variables of a component, applying refinement 

patterns for all the operations of a component, and producing the resulting B 

component. When a variable is refined, related information is stored (variable 



refinement information) in order to be reused later on and to speed up the process 

(variable refinement is elaborated once for all). The recursive application of these 3 

steps should lead to a B project fully implemented, if the refinement patterns can be 

applied at each step of the process. If it is not true, the refinement process stops and 

some interaction with the user are required to modify existing refinement patterns 

and/or add new ones. 

 

Tools. In 1997, Matra Transport International (now Siemens Transportation Systems) 

developed internally a tool called edithB that was used for the development of the 

Automatic Train Protection System of Canersie Line in New York. This tool was 

developed in Ada. 

In 2008, with Siemens agreement, ClearSy developed a similar tool, called BART (B 

Automatic Refinement Tool), in order to allow the Community to benefit from 

automatic refinement tools. The development of the tool has been partly supported by 

grant No ANR-06-SETI-015-03 awarded by  “Agence Nationale de la Recherche” 

during the R&D project RIMEL (Incremental refinement of event models). In 2009, 

BART4 is integrated to the first open-source version of Atelier B (4.0). BART is made 

more generic than EdithB, in particular the support of the vital coded-monoprocessor 

is removed. This tool is developed in C++/Qt. 

 

 

Figure 7: example of an IMPORTED_OPERATION substitution 

 

For both tools, refinement patterns are expressed using a rich language [9] that allows 

to specify guards/constraints like DECL_OPERATION (that requires for an operation 

to be defined), to tune the refinement process and to use advanced substitutions like 

TYPE_ITERATION (that generates while loops when iterating over a type) or 

IMPORTED_OPERATION (that generates operation definition and operation call 

when a treatment needs to be exported to another machine).  

 

Figure 8: example of a rule using DECL_OPERATION. The valuation of @a by @b is 

replaced by the call of an operation (named @d) that returns @b.  

 

                                                           
4 https://sourceforge.net/projects/bartrefiner/ 



These advanced substitutions allow mimicking human refinement by defining 

precisely how to refine variables and substitutions. These advanced substitutions are 

replaced by regular substitutions during the automatic refinement process. 

The refinement engine manages a stack which contains information about the project, 

and how variables are refined. This stack also contains tags generated by the 

refinement rules when applied, these tags have no prior semantics but could be used 

by refinement rules to give a particular direction to the refinement process.  

 
Metrics. Detailed metrics on edithB are not publically available. Concerning BART, 

the complete software is made of 264 kloc decomposed as follows: 

- Core tool: 89 kloc.  

- GUI: 12 kloc 

- B Compiler : 154 kloc 

- Bwidgets : 7 kloc. 

The core tool is made of the refining engine (the biggest module – 7 kloc), the 

rules parser, the splitter, the namer and the pattern matcher. The complete 

development was completed in 10 months.  

The tool was tested and validated using regular test bench. Indeed, even if the tool 

is directly contributing to the building of SIL45 software, the tool is not expected to be 

“correct-by-construction” – in case of design error, the generated model should be not 

provable. In this case, the Atelier B prover is our safety belt. 

4   Industrial Applications 

Several applications have been developed with edithB and BART.  

 

EdithB has been used for an automatic train protection software (embedded 

software in charge of stopping a metro in case it is not able to comply with speed 

limit) in New York [10] and for a wayside control unit (in charge of avoiding train 

collision) in Roissy airport [2]. If we compare the figures from a manual development 

[3], [4] and from an automatic refinement development, for the same kind of 

application, it is apparent that automatic refinement is generating more lines of B 

models and target code (see Table 1). Meteor and Canarsie being similar applications, 

automatic refinement is able to double the size of the modelling. There are several 

reasons for that: every part of the concrete model is usually broken down into many 

intermediate levels, which produce many lines of B (hence many lines of target code), 

and code is not shared through the refinement process (for example, generic elements 

share a similar code, however the code is duplicated at each use). On the proof 

obligations side, Meteor, Canarsie and Val Roissy generate respectively around 

27 000, 82 000 and 43 000 proof obligations. Even if it is difficult to compare proof 

just from these figures, we can notice automatic refinement generates more proof 

obligations. Most of them are located in the abstract model, demonstrating the 

effectiveness of automatic refinement. Moreover, while 1 400 mathematical rules 

                                                           
5 Safety Integrity Level 4 (highest level) 



were required to prove Meteor proof obligations, only 290 rules were required for Val 

Roissy (together with 61 generic demonstrations, 97% proof obligations were 

automatically demonstrated). 

Table 1.  Number of lines of B models per project.  

Project Abstract model Concrete manual Concrete automatic 

Meteor  <-            115 000            -> None 

Canarsie line 125 000 38 000 110 000 

VAL Roissy 38 000 27 000 117 000 

    

 

 

BART has been used for the development of several SIL4 T26 tools, mainly to 

avoid the development of two redundant software (B allows to develop single SIL4 

proven software, non-proven software requires to be developed twice by two separate 

teams with distinct technologies). Figures similar to edithB have been measured from 

these developments:  

- manual modelling represents one third of the total while automatic 

refinement is two third. Around 500 refinement rules have been added in 

every project. 

- abstract modelling represents two third of development + proof cost while 

concrete modelling is one third. However 1 800 mathematical rules were 

added to the prover (compared to the 290 for Val Roissy). This can be 

explained by the fact that Atelier B main prover mathematical rules database 

has been enriched to cover the same kind of modelling (ATP software), so 

the new kind of modelling brought by these T2 tools requires to slightly 

bootstrap the prover.  

- generated source code has twice the size of handwritten source code because 

of the many operation calls. Because of constraint [R4], every refinement 

step requires to add an extra-layer of imports, hence the number of lines. 

 

Generated models keep track of the initial substitution and of the refinement rules 

used, with comments inserted in the model (see listing below). 

 
Load_component_2(pcd, pid, pctd2) =  

  VAR 

    l_1 

  IN 

    l_1 :(l_1 : INT); 

    /* Rule : specific.r14_exit */ 

    /*? l_1 := perm_component_cpt ?*/ 

    /* Rule : default.default */ 

    l_1 <-- Load_component_2_1 ; 

    test_max_component_def(l_1) ; 

                                                           
6 According to EN50128 standard, tools are categorized in three : T3 for tools directly 

contributing to source code, T2 for tools performing verification, T1 for all other tools 

(editors for example). 



    /*? perm_component_r( bijection_component_def (perm_component_cpt 

+ 1)) := pid ?*/ 

    /* Rule : default.default */ 

    Load_component_2_2(pid) ; 

    … 

 

Refinement rules are mainly gathered in a single file (rmf) shared in the whole 

project. This file has to be set up right at the beginning of the project by identifying 

the abstract data types that need to be taken into account and how they are 

implemented. This identification requires performing several interactive refinement 

sessions (see Figure 9). Then automatically refining the project is initiated, the 

components being refined in parallel by different users. New refinement rule is added 

in the shared rmf file if the rule is generic (reusable in another operation / component) 

or added to a rmf file specific otherwise. Shared rmf file is composed of: 

- 400 rules for operations 

- 45 rules for structure 

- 30 rules for data 

- 30 rules for initialisation 

 

 

Figure 9: example of interactive refinement session. The refinement tree is displayed on 

bottom left 

 

5   Return of Experience on Using Set Theory Modelling  

The approach presented in this paper is aimed at developing abstract deterministic 

software specification, using B as a high level language, and leaving most of 

implementation details to a mechanical, semi-automated process. The specification 

has to be written using set theory and first order logic, in a way to avoid introducing 

programmatic gimmicks too early.  

For example, in the case of the block controller in [2], blocks are either occupied by a 

train or free. This information should be safely computed by the functional module 

“Block Logic”. It is formalized by the abstract variable occupied_blocks: 



- Either as a subset of t_block (1): a block belongs to occupied_blocks if and 

only if it is considered to be occupied.   

- Or as a total function from t_block to BOOL (2), associating to a block the 

value TRUE when the block is occupied and FALSE when it is not. 

 

 
 

Actually this second choice suits less the proposed B Method, since it is more an 

encoding of the former (i.e., the use of a set characteristic function instead of the set 

directly). In this case using a subset of blocks is more abstract. Expressions, 

predicates and substitutions concerning this set are also more abstract and closest 

from informal specification. We prefer to use properties over sets when specifying 

instead of describing the intricate loops that are required to iterate over tables. 

We also use relations, partial functions and total functions to type abstract data. For 

example, the abstract constant ctx_next_block_up associates to a block its next 

upward block. A block has at most one next block located in the upward direction. A 

terminal block in the upward direction has no next upward block. So next_block_up is 

a partial function from t_block to t_block. Finally property states are added to the 

model, such as this one (linking blocks states and sensors): 

 

 
 

With such predicate, we are able to capture a property in a compact form that is quite 

straightforward to check. Up to 16 properties have to be formalized in the abstract 

model. Although it seems to be a small number, some properties had to be cut into 

many actual properties. At the end, the size of the static and dynamic properties in the 

main abstract machine is more than 1,000 line long. With the mathematical proof, we 

do not have to verify the consistancy of these 1,000 lines but just to check that they 

correctly refine a unique property that is easier to check against the informal 

specification. In the case of xml engineering tools, xml models are represented as 

lists, lists of lists, etc. Data types are more elaborated with the notion of  node pointers 

and references to be able to navigate the xml trees. Abstract iterators operate on 

(node) lists, so many of the existing refinement rules are still valid in this context.  

However the development of software aimed at a very different domain induced 

important modelling effort: 

- New data types and structures imply to completely revisit data type related 

refinement rules 

- Existing structural refinement rules have to be specialized in order to take 

into account these new data types and structures  

 

From this experience, we may consider that the first application of automatic 

refinement to a new domain is not expected to be economically sound as some effort 

is required to axiomatize refinement for this domain. However further applications 



allow to reuse most of existing rules and to specialize only when required, for 

particular algorithms. Similarly automatic refinement was initially expected to help 

newcomers to apply refinement more efficiently. It appears that the profile required to 

efficiently use automatic refinement demands so many skills that finally only 

proficient practitioners and experts are able to deal with it. Indeed writing refinement 

rules could be seen as abstracting the refinement process and requires a strong habit 

of it. 

5 Conclusion and perspectives 

Automatic refinement is likely to improve productivity by automating tasks, leading 

to simpler proofs and simplifying the reuse of known refinement patterns. Similar 

types and treatments are always refined the same way. This process is not limited to a 

single type of application, as it has been applied to embedded software as well as to 

more classical applications (symbolic computation, SysML model analyser / 

transformer), while obtaining the same metrics (modelling, refinement and proof 

effort). The process is scalable. 

 

 

Figure 10: conflict depicted to the user 

 

 

On the other hand, even if it was our objective when we decided to develop BART, an 

automatic refiner is not a tool for beginners as it requires understanding why the 

automatic refinement process stops and how to modify existing refinement rules. 

Having some experience in refining in B is mandatory to get the most out of it.  



Constraint [R1] is posing a problem to existing refinement algorithms: in case of 

conflicting rules, a single variable could be implemented in different components at 

the same time that is rejected by Atelier B project checker. We are currently working 

on improving these algorithms in order to not apply conflicting rules and to provide 

some guidance to the user (interaction with user still remains to be decided). Current 

feedback is provided as an implementation graph exhibiting exports and implemented 

constraints. In Figure 10, we can clearly see a cycle (the upward arrow from variable 

mb to component mask_blocks_1). The art of the automatic refinement is today to 

understand from this graph how to modify refinement rules in order to solve these 

conflicts. 

 

We are also investigating the possibility to “prove” refinement rules in order to 

consider that related proof obligations are “by construction” already proven. We are 

using an approach similar to the Atelier B main prover: the inference engine is based 

on transformation rules that have been formally proven, hence the successive 

application of these rules to solve a predicate is considered correct and the predicate is 

considered true. 
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