Introduction to the Integration
of SMT-Solvers in Rodin*

David Déharbe!, Pascal Fontaine?, Yoann Guyot?, and Laurent Voisin*

! Federal University of Rio Grande do Norte, Brazil
2 University of Lorraine, Loria, Inria, France
3 Cetic, Belgium
4 SQysterel, France

Abstract. Event-B is a system specification approach based on set the-
ory, integer arithmetics and refinement, supported by the Rodin plat-
form, an Eclipse-based IDE. Event-B development requires the validation
of proof obligations, often with set operators. This approach relies on the
existence of theorem proving techniques that handle such set constructs.
One such technique is known as Satisfiability Modulo Theory (SMT)
solving. However, there is no direct support for set-theory operators in
the standard logics supported by SMT solvers.

We have developed an ad hoc encoding approach enabling the verifica-
tion of Event-B proof obligations using SMT-solving technology. Its full
description is available in [12], and we present here the general principles.

Keywords: Event-B - SMT - Rodin

1 Introduction

Event-B [2] is a notation and a theory for formal system modeling and refine-
ment, based on first-order logic, typed set theory and integer arithmetic. The
Rodin platform [7] is an integrated design environment for Event-B. It is based
on the Eclipse framework [16], and has an extensible architecture, where features
can be integrated and updated by means of plug-ins. Event-B models must be
proved consistent; for this purpose, Rodin generates proof obligations that need
to be proved valid.

The proof obligations are represented internally as sequents, the sequent
calculus providing the basis of the verification framework. Rodin applies proof
rules to a sequent to produce zero, one or more new, usually simpler, sequents. A
proof rule producing no sequent is a discharging rule. The goal of the verification
is to build a proof tree corresponding to the application of the proof rules, where

* This work is partly supported by the project ANR-13-IS02-0001-01, the STIC
AmSud MISMT, CAPES grant BEX 2347/13-0, CNPq grants 308008/2012-0
and 573964/2008-4 (National Institute of Science and Technology for Software
Engineering—INES, www.ines.org.br), and EU funded project ADVANCE (FP7-
1CT-287563).

the leaves are discharging rules. In practice, the proof rules are generated by
so-called reasoners. A reasoner is a plug-in that can either be standalone or use
existing verification technologies through third-party tools.

The verification shall be automated, informative and trustable. Although full
automation is theoretically impossible, and eventually interactive theorem prov-
ing needs to be supported, fine-tuning existing automatic verification techniques
can yield significant improvements in the productivity (and usability) of the en-
gineers applying this method. Moreover, when a model is edited and modified,
large parts of the proof can be preserved if the precise facts used to validate
each proof obligation are recorded. So it is important that the reasoners inform
such sets of relevant facts, that are then used to automatically construct new
proof rules to be stored and tried for after model changes. A bonus is that other
sequents (valid for the same reason) may be discharged by these rules without
requiring another call to the reasoner. When reasoners inform counter-examples
of failed proof obligations, this is valuable information to the user to improve the
model and the invariants. We must also be aware that, when a prover is used,
either the tool itself or its results need to be certified; otherwise the confidence
in the formal development is jeopardized.

This paper presents a SMT plug-in for Rodin, enabling a verification ap-
proach that has the potential of fulfilling such requirements. Indeed, SMT solvers
can automatically handle large formulas of first-order logic with respect to some
background theories, or a combination thereof, such as different fragments of
arithmetic (linear and non-linear, integer and real), arrays, bit vectors, etc. They
have been employed successfully to handle proof obligations with tens of thou-
sands of symbols stemming from software and hardware verification. This paper
presents a new approach to encode set-theory formulas in first-order logic. The
full details of this approach are presented in [12].

Outline of the paper. Sections 2 and 3 introduce briefly the technical background
of this paper, namely SMT-solving and Event-B. The encoding approach for the
verification of sequents with set constructs using existing SMT-solvers is then
presented in section 4. In section 5, we report the results of an experimental
appraisal of this approach. We then present our conclusions in section 6.

Throughout the paper, formulas are expressed using the Event-B syntax [2],
and sentences in SMT-LIB are typeset using a typewriter font.

2 SMT Solvers

A SMT solver is basically a decision procedure for quantifier-free formulas in a
rich language coupled with an instantiation module that handles the quantifiers
in the formulas by grounding the problem. For quantified logic, SMT solvers
are of course not decision procedures anymore, but they work well in practice if
the necessary instances are easy to find and not too numerous. We refer to [4]
for more information about the techniques described in this section and SMT
solving in general.

The SMT-LIB initiative [5] provides a standard input language of SMT
solvers and a command language defining a common interface to interact with
SMT solvers. Some solvers (e.g. Z3 [9] and veriT [6]) implement commands that
generate a comprehensive proof for validated formulas; such a proof can then be
verified by a trusted proof checker [3]. In the longer term, besides automation
and information, trust may be obtained using a centralized proof manager.

Historically, the first goal of SMT solvers was to provide efficient decision
procedures for expressive languages, beyond pure propositional logic. The SMT-
LIB includes a number of pre-defined such “logics”, which the existing solvers
handle at least in part. But there is not yet an agreed-upon theory on sets in
the SMT-LIB. To apply a SMT solver to a proof obligation with set constructs,
one could include in this proof obligation an axiomatization of these operators.
However such axiomatization often include quantified formulas which happen
to be problematic in practice for SMT solvers. Another approach is to find an
encoding of the set operators in one of the logics defined in the SMT-LIB. We
shall present one such encoding in this paper.

Additionally to the satisfiability response, it is possible, in case of an unsat-
isfiable input, to ask for an unsatisfiable core. It may indeed be very valuable to
know which hypotheses are necessary to prove a goal in a verification condition.
For instance, the sequent (1) discussed in Section 3 and translated into the SMT
input in Figure 4 is valid independently of the assertion labeled grd1; the SMT
input associates labels to the hypotheses, guards, and goals, using the reserved
SMT-LIB annotation operator !. A solver implementing the SMT-LIB unsatis-
fiable core feature could thus return the list of hypotheses used to validate the
goals. In the case of the example in Figure 4, the guard is not necessary to prove
unsatisfiability, and would therefore not belong to a good unsatisfiable core.

Recording unsatisfiable cores for comparison with new proof obligations is
particularly useful in our context. Indeed, users of the Rodin platform will want
to modify their models and their invariants, resulting in a need of revalidating
proof obligations mostly but not fully similar to already validated ones. If the
changes do not impact the relevant hypotheses and goal of a proof obligation,
comparison with the (previous) unsatisfiable core will discharge the proof obliga-
tion and the SMT solver will not need to be run again. Also a same unsatisfiable
core is likely to discharge similar proof obligations, for instance generated for a
similar transition, but differing for the guard.

3 Event-B

We introduce the Event-B notation through excerpts of a simple example: a
model of a simple job processing system consisting of a job queue and several
active jobs. Set JOBS represents the jobs. The state of the model has two vari-
ables: queue (the jobs currently queued) and active (the jobs being processed).
This state is constrained by the following invariants:

invl : active C JOBS (typing)
inv2: queue C JOBS (typing)

inv3: active N queue = @ (a job can not be both active and queued)

One of the events is when a job leaves the queue to become active:

Event SCHEDULE = (some queued job j becomes active)
any
J
where
grdl: j € queue (the job j is in the queue)
then
actl: active := active U {j} (the job becomes active)
act2: queue := queue \ {j} (the job is removed from the queue)
end

The invariant inv3 is preserved by this event, if the following sequent is valid:

invi, inv2, inv3, grdl - (active U {j}) N (queue\ {j}) = @ .

1)

active’ queue’

Thus, the corresponding proof obligation consists in showing that the following
formula is unsatisfiable:

active C JOBS A queue C JOBS A active N queue = A j € queue N\
=((active U {j}) N (queue\ {j}) = @) .

A typical development in Event-B contains hundreds or even thousands of such
proof obligations, and often some share many common sub-formulas.

4 Translating Event-B to SMT

Figure 1 gives a schematic view of the cooperation framework between Rodin
and the SMT solver. Within the Rodin platform, each proof obligation is repre-
sented as a sequent, i.e. a set of hypotheses and a conclusion. These sequents are
discharged using Event-B proof rules. Our strategy to prove an Event-B sequent
is to build an SMT formula, call an SMT solver on this formula, and, on success,
introduce a new suitable proof rule. This strategy is presented as a tactic in the
Rodin user interface. Since SMT solvers answer the satisfiability question, it is
necessary to take the negation of the sequent (to be validated) in order to build a
formula to be refuted by the SMT solver. If the SMT solver does not implement
unsatisfiable core generation, the proof rule will assert that the full Event-B se-
quent is valid (and will only be useful for that specific sequent). Otherwise an
unsatisfiable core — i.e., the set of facts necessary to prove that the formula
is unsatisfiable — is supplied to Rodin, which will extract a stronger Event-B
proof rule containing only the necessary hypotheses. This stronger proof rule
will hopefully be applicable to other Event-B sequents. If, however, the SMT
solver is not successful, the application of the tactic has failed and the proof tree
remains unchanged.

’ RODIN ‘

Y f

Event B sequent Event B
proof rule

negation of
Event B sequent SMT response:
« SAT
« UNSAT
o proof
° relevant
hypotheses

SMT formula

v t

gl

’ SMT solver ‘

Fig. 1. Schematic view of the interaction between Rodin and SMT solvers.

The SMT-LIB standard proposes several “logics” that specify the interpreted
symbols that may be used in the formulas. Currently, however, none of these
logics fits exactly the language of the proof obligations generated by Rodin. There
exists a proposal for such a logic [14], but the existing SMT solvers do not yet
implement corresponding reasoning procedures. Our pragmatic approach is thus
to identify subsets of the Event-B logics that may be handled by the current tools,
either directly or through some simple transformations. The translation takes as
input the Event-B proof obligations. The representation of proof obligations is
such that each identifier has been annotated with its type. In the type system,
integers and Booleans are predefined, and the user may create new basic sets, or
compose existing types with the powerset and Cartesian product constructors.
Translating Boolean and arithmetic constructs is mostly straightforward, since
a direct syntactic translation may be undertaken for some symbols: Boolean
operators and constants, relational operators, and most of arithmetic (division
and exponentiation operators are currently translated as uninterpreted symbols).
As an example of transformation of an Event-B sequent to an SMT formula,
consider the sequent with goal 0 < n 4+ 1 under the hypothesis n € N; the type
environment is {n 8 Z} and the generated SMT-LIB formula is:

(set-logic AUFLIA)
(declare-fun n () Int)
(assert (>=n 0))

(assert (not (< 0 (+ n 1))))
(check-sat)

The main issue in the translation of proof obligations to SMT-LIB is the
representation of the set-theoretic constructs. Different approaches are possible,
especially considering the expressiveness of the set operators found in the proof
obligation. For instance, the approach presented in [10] encodes sets as predi-

cates, but does not make it possible to reason about sets of sets. We present here
an approach that removes this restriction. It uses the ppTrans translator [13],
already available in the Rodin platform; it removes most set-theoretic constructs
from proof obligations by systematically expanding their definitions. It translates
an Event-B formula to an equivalent formula in a subset of the Event-B mathe-
matical language (see the grammar of this subset in Fig. 2). The sole set-theoretic
symbol is the membership predicate. In addition, the translator performs decom-
position of binary relations and purification, i.e., it separates arithmetic, Boolean
and set-theoretic terms. Finally ppTrans performs basic Boolean simplifications
on formulas. In the following, we provide details on those transformations, using

the notation ¢ ~» ¢’ to express that the formula (or sub-term) ¢ is rewritten to
/

@ .

P:=P=P|P=P|PA---ANP|PV---VP|
-P|VL-P|3L-P|
A=A|A<A|A<A|MeS|B=B|I=1I

Lu=1---1

I ::= Name

Aux=A—-—A|AdivA|Amod A| Aexp A |

A+ +A|Ax---xA|—A|I| IntegerLiteral

B :=true|I
M ::= M+~ M | I | integer | bool
Su=1

Fig. 2. Grammar of the language produced by ppTrans. The non-terminals are P (pred-
icates), L (list of identifiers), I (identifiers), A (arithmetic expressions), B (Boolean
expressions), M (maplet expressions), S (set expressions).

Maplet-hiding variables The rewriting system implemented in ppTrans can-
not directly transform identifiers that are of type Cartesian product. In a pre-
processing phase, such identifiers are thus decomposed, so that further rewriting
rules may be applied. This decomposition introduces fresh identifiers of scalar
type (members of some given set, integers or Booleans) that name the compo-
nents of the Cartesian product. Technically, this pre-processing is as follows. We
assume the existence of an attribute T, such that 7 (e) is the type of expression
e. Also, let fv(e) denote the free identifiers occurring in expression e. The decom-
position of the Cartesian product identifiers is specified, assuming an unlimited
supply of fresh identifiers (e.g. g, 21,...), using the following two definitions V
and V7:

V(i) = VT(T (i) if i is a product identifier,
Y= otherwise.

VI (T) = VI(Ty) = VI(Ty) if 3Ty, To-T =Ty x Ty,
a fresh identifier x; otherwise.

For instance, assume = 8 Z x (Z x Z); then V(z) = xg — (21 — x2) and
fv(V(z)) = {zo, 1, z2} are fresh identifiers.
The pre-processing behaves as follows:

— Quantified sub-formulas Vx - ¢(z), such that z is a product identifier, are
rewritten to

Viv(V(2)) - ¢[V(2)/x],

where e[e’ /z] denotes expression e where expression e’ has been substituted
for all free occurrences of x.
Ex. Vara =1+ (2 3) ~ VYag,a1,a2 - ag — (a1 — az) =1+ (2~ 3).

— Let v denote the top-level formula and let x; ...z, be the free Cartesian
product identifiers of . Then:

P~ Viv(V(21)) -V (2))-
(x1 = V(@) A n = V(2n)) = Y[V (21)/1] - [V(2n)/20].

Ex.)y =a=bAa € S with typing {a ¢ S,b8 5,5 s P(Z x Z)}:

Y~ Vg, T1, T2, T3
(a=zg— 21 ANb=129+— 23) =
($0'—>$1:$2'—>J33/\$00—>$1 ES)

Purification The goal of this phase is to obtain pure terms, i.e. terms that
do not mix symbols of separate syntactic categories: arithmetic, predicate, set,
Boolean, and maplet symbols. This is done by introducing new variables. In
Event-B, heterogeneous terms result from the application of symbols with a
signature with different sorts (e.g. symbol C yields a predicate from two sets).
This phase also eliminates some syntactic sugar. Figure 3 depicts the different
syntactic categories, how the Event-B operators relate them, and the effect of
desugarization. There is an arrow from category X to category Y if a term from
X may have an argument in Y. For instance . € labels the arrow from P to A
since the left argument of € may be an arithmetic term, e.g. in x +y € S.

First, let us introduce informally the notation Q’P[e*], where Q is V or 3,
P a predicate, and e an expression in P such that the syntactic category of e
is not the same as that of its parent (identifiers are considered to belong to all
syntactic categories). This denotes the possible introduction of the quantifier Q
on a fresh variable, so that heterogeneous sub-terms in e are purified, yielding
e*, as illustrated by the following examples:

1. 3%(a+ (1 2))* € S represents Jzg, 2170 = LAz = 2Aa = (19— 21) €
S as 1 and 2 are not in the same syntactic category as the maplet.
2. V¥(a + b)* € S does not introduce a quantification and denotes a + b € S.

Due to lack of space, we select some rules of the rewrite system implemented
in ppTrans. The symbols relating the syntactic categories P (predicates) and
S (sets) are reduced to membership (€) and equality (=) by application of the
rules such as:

€

II:7 #7 ga g7 Z, c, ¢7
finite, partition]

P {z-P| F}
Nz-P|F
Uz-P|F

(e P)
{a,...,b}

Fig. 3. The different syntactic categories and the symbols relating them: A for arith-
metic expressions, P for predicates, S for set expressions, B for Boolean expressions and
M for maplet expressions. pp Trans removes all occurrences of the constructs delimited
by double-brackets.

r#Fy~-(xz=y) (2 z s~ (x€s) (4)
s Ct~seP(t) (3) finite(s) ~» Va-3b, f-f € s —a..b (5)

Moreover rules 2 and 4 are also applied when the arguments belong to other syn-
tactic categories and are responsible for the elimination of all the occurrences of
symbols # and ¢. Examples to eliminate equalities between syntactic categories
S, M are:

Tl T2 =Y1 > Y2 1 =Y1 AT2 = Y2 (6) z=f(y)~y—zef (9)
bool(P) = bool(Q) ~ P < Q () z =FALSE ~» —(z = TRUE)
bool(P) = TRUE ~» P (8) (10)

Due to the symmetry property of equality, ppTrans also applies a symmetric
version of each such rule. The symbols that embed arithmetic terms are taken
care of with rules such as:

n = card(s) ~» 3f-f € s—»1.n (11)

n = max(s) ~ n € s Amax(s) <n
(12)

a-b~b=<a (13)
a < max(s) ~ Jz-x € sha <z (14)

The remaining rules perform the following roles: rewrite applications of the
set membership symbol according to the rightmost argument (e.g. 15), eliminate
some symbols (e.g. 17), and handle miscellaneous other cases:

e€s«nt~e€s«rtAt Cran(e) (15)
e€s«rt~e€s+tAsC dom(e) (16)
e~ feEsxtwecsNfet 17
e~ feidwe=f (18)
e fer e~ fisecr (19)
e~ feEs<r~e—ferhecs (20)
e~ fepred~e=f+1 (21)

The full system consists of 80 rules. They are either sound purification rules,
or the equivalence of the left and right side terms can easily be derived from
the definitions (see [1]) of the eliminated symbols. Purification rules eliminate
heterogeneous terms and are only applied once. It is not difficult to order all
other rules such that no eliminated symbol is introduced in subsequent rules.
The rewriting system is thus indeed terminating.

Output to SMT-LIB format Once pp Trans has completed rewriting, the resulting
proof obligation is ready to be output in SMT-LIB format. The translation from
ppTrans’ output to SMT-LIB follows specific rules for the translation of the set
membership operator. For instance assume the input has the following typing
environment and formulas:

Typing environment Formulas
asg s
I;ig a€c A
A:IP’(S) a—ber
r:IP’(SxT) a—b—ceEs
ssP(SxT xU)

Firstly, for each basic set found in the proof obligation, the translation pro-
duces a sort declaration in SMT-LIB. However, as there is currently no logic in
the SMT-LIB with powerset and Cartesian product sort constructors, ppTrans
handles them by producing an additional sort declaration for each combina-
tion of basic sets (either through powerset or Cartesian product). Translating
the typing environment thus produces a sort declaration for each basic set, and
combination thereof found in the input. In SMT-LIB, sorts have a name and an
arity, which is non-null for polymorphic sorts. The sorts produced have all arity
0, and for the above example, the following is produced:

S ~» (declare-sort S 0)

T ~» (declare-sort T 0)

U ~» (declare-sort U 0)

P(S) ~» (declare-sort PS 0)
P(S x T') ~» (declare-sort PST 0)
P(S x T x U) ~» (declare-sort PSTU 0)

Secondly, for each constant, the translation produces a function declaration
of the appropriate sort:

S ~» (declare-fun a () S)
T ~» (declare-fun b () T)
U ~» (declare-fun c () U)
A g P(S) ~ (declare-fun A () PS)

r 8 P(S xT)~ (declare-fun r () PST)

s 8 P(SXT xU)~ (declare-fun s () PSTU)

00 o0 o0

Third, for each type occurring at the right-hand side of a membership predicate,
the translation produces fresh SMT function symbols:

(declare-fun (MSO (S PS) Bool))
(declare-fun (MS1 (S T PST) Bool))
(declare-fun (MS2 (S T U PSTU)) Bool)

The Event-B atoms can then be translated as follows:

a€ A~ (MSO a A)
ar—~be&er~ (MS1 a b r)
ar—>br—>cEs~ (MS2 a b ¢ s)

For instance, AU{a} = A would be translated to Vz-(x € AVz = a)&x € A,
that is, in SMT-LIB format:

(forall ((x S)) (= (or (MSO x A) (= x a)) (MSO x A)))

While the approach presented here covers the whole Event-B mathemati-
cal language and is compatible with the SMT-LIB language, the semantics of
some Event-B constructs is approximated because some operators become unin-
terpreted in SMT-LIB (chiefly membership but also some arithmetic operators
such as division and exponentiation). However, we can recover their interpreta-
tion by adding axioms to the SMT-LIB benchmark, at the risk of decreasing the
performance of the SMT solvers. Some experimentation is thus needed to find a
good balance between efficiency and completeness.

Indeed, it appears experimentally that including some axioms of set theory
to constrain the possible interpretations of the membership predicate greatly
improves the number of proof obligations discharged. In particular, the axiom of
elementary set (singleton part) is necessary for many Rodin proof obligations.
The translator directly instantiates the axiom for all membership predicates.
Assuming MS is the membership predicate associated with sorts S and PS, the
translation introduces thus the following assertion:

(assert (forall ((x S))
(exists ((X PS)) (and (MS x X)
(forall ((y 8)) (=> (MS y X) (=y x)))))))

This particular assertion eliminates non-standard interpretations where some
singleton sets do not exist. Without it, some formulas are satisfiable because of
spurious models and the SMT solvers are unable to refute them.

A small example As a concrete example of translation, we consider the sequent
presented in Section 3. Figure 4 presents the SMT-LIB input resulting from
the translation approach described in this paper. Since the proof obligation in-
cludes sets of JOBS, a corresponding sort PJ and membership predicate MS
are declared in lines 3-4. Then, the function symbols corresponding to the free
identifiers of the sequent are declared at lines 5-7. Finally, the hypotheses and
the goal of the sequent are translated to named assertions (lines 8-14).

The sequent described in this section is very simple and is easily verified by
both Atelier-B provers and SMT solvers. It is noteworthy that the plug-in in-
spects sequents to choose the most suitable encoding approach. The next section
reports experiments with a large number of proof obligations and establishes a
better basis to compare the effectiveness of these different verification techniques.

5 Experimental results

We evaluated experimentally the effectiveness of using SMT solvers as reason-
ers in the Rodin platform by means of the techniques presented in this paper.
This evaluation complements the experiments presented in [11] and reinforces
their conclusions. We established a library of 2,456 proof obligations stemming
from Event-B developments collected by the European FP7 project Deploy and
publicly available on the Deploy repository®. These developments originate from

® http://deploy-eprints.ecs.soton.ac.uk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(set-logic AUFLIA)
(declare-sort JOBS 0)
(declare-sort PJ 0)
(declare-fun MS (JOBS PJ) Bool)
(declare-fun active () PJ)
(declare-fun j () JOBS)
(declare-fun queue () PJ)
(assert (! (forall ((x JOBS))
(not (and (MS x active) (MS x queue)))) :named inv3))
(assert (! (MS j queue) :named grdil))
(assert (! (not (forall ((xO JOBS))
(not (and (or (MS x0 active) (= x0 j))

(MS x0 queue)

(not (= x0 3j)))))) :named goal))
(check-sat)

Fig. 4. SMT-LIB input produced using the ppTrans approach.

examples from Abrial’s book [2], academic publications, tutorials, as well as
industrial case studies.

One main objective of introducing new reasoners in the Rodin platform is to
reduce the number of valid proof obligations that need to be discharged interac-
tively by humans. Consequently, the effectiveness of a reasoner is measured by
the number of proof obligations proved automatically by the reasoner.

Obviously, effectiveness should depend on the computing resources given to
the reasoners. In practice, the amount of memory is seldom a bottleneck, and
usually the solvers are limited by setting a timeout on their execution time. In the
context of the Rodin platform, the reasoners are executed by synchronous calls,
and the longer the time limit, the less responsive is the framework to the user.
We have experimented different timeouts and our experiments have shown us
that a timeout of one second seems a good trade-off: doubling the timeout to two
seconds increases by fewer than 0.1% the number of verified proof obligations,
while decreasing the responsiveness of the platform.

Table 1 compares different reasoners on our set of benchmarks. The second
column corresponds to Rodin internal normalization and simplification proce-
dures. It shows that more than half of the generated proof obligations necessitate
advanced theorem-proving capabilities to be discharged. The third column is a
special-purpose reasoner, namely Atelier-B provers. They were originally devel-
oped for the B method and are also available in the Rodin platform. Although
they are extremely effective, the Atelier-B provers now suffer from legacy issues.
The last five columns are various SMT solvers applied to the proof obligations
generated by the plug-in. The SMT solvers were used with a timeout of one sec-
ond, on a computer equipped with an Intel Core i7-4770, cadenced at 3.40 GHz,
with 24 GB of RAM, and running Ubuntu Linux 12.04. They show decent results,
but they are not yet as effective reasoners as the Atelier-B theorem provers.

%) -

| — o) 2

3 DR <
- 5 = = % &

- o 1 !

= m Tz 5 5
3o o S o < <3
2 =} o fan N ! (]
£ = = - S o B e
5 g Sl = = 5 g g o
Z 2 = < @ 3 > > N
2456 [[1169 | 2260 | 2017 2218 2051 2160 2094 |

Table 1. Number of proof obligations discharged by the reasoners.

Although this comparison is interesting to evaluate and compare the different
reasoners, it is not sufficient to evaluate the effectiveness of the approach pre-
sented in this paper. Indeed, nothing prevents users to use several other reasoners
once one has failed to achieve its goal. In Table 2, we report how many proof
obligations remain unproved after applying the traditional reasoners (Atelier-B
theorem provers and the Rodin reasoner) in combination with each SMT solver,
and with all SMT solvers.

g P
1% 2]
: 58 5 |&
< ~ =& 2 2
o 2 5 7 F 4 2

OE o — > =
g S 2 < = g
Qo gDC\l ! NE
ES g S B B g ®
S2E|l = 2 8 B S| =
Z as S & > > W[<
196 [[114 61 94 103 9231

Table 2. Number of proof obligations not discharged by special-purpose reasoners and
by each SMT solver.

Each SMT solver seems a useful complement to the special-purpose provers.
However, we would also like to know whether the reasoning capacity of some
of these solvers is somehow subsumed by another solver, or whether each SMT
solver could provide a significant contribution towards reducing the number of
proof obligations that need to be discharged by humans. Table 3 synthesizes a
pairwise comparison of the SMT solvers on our universe of proof obligations.

This comparison signals the results obtained when all available reasoners are
applied: only 31 proof obligations are unproved, down from 196 resulting from
the application of Atelier-B provers. It is also noteworthy that even though each
SMT solver is individually less effective than Atelier-B provers, applied alto-
gether, they prove all but 97 proof obligations. The important conclusion of our
experiments is that there is strong evidence that SMT solvers complement in an
effective and practical way the Atelier B provers, yielding significant improve-

[alt-ergo [cve3 [veriT [veriT+E | 23 |

alt-ergo 2017 2001 | 1880 1967 1911
cved 2001 2218 | 1953 2088 2031
veriT 1880 1953 | 2051 1958 1878
veriT+E 1967 2088 | 1958 2160 2067
73 1911 2031 | 1878 1972 2094

Table 3. Number of proof obligations verified by SMT solver A also discharged by
solver B.

ments in the usability of the Rodin platform and its effectiveness to support the
development of Event-B models.

6 Conclusion

SMT solving is a formal verification technique successfully applied to various
domains including verification. SMT solvers do not have built-in support for
set-theoretic constructs found in Rodin sequents. We presented here a transla-
tion approach to tackle this issue. We evaluated experimentally the efficiency of
SMT solvers against proof obligations resulting from the translation of Rodin
sequents. In our sample of industrial and academic projects, the use of SMT
solvers on top of Atelier B provers reduces significantly the number of unverified
sequents. This plug-in is available through the integrated software updater of
Rodin (instructions at http://wiki.event-b.org/index.php/SMT_Plug-in).

The results are very encouraging and motivate us to progress further by
implementing and evaluating new translation approaches, such as representing
functions using arrays in the line of [8]. Elaborating strategies to apply different
reasoners, based on some characteristics of the sequents is also a promising line of
work. Another feature of some SMT solvers is that they can provide models when
a formula is satisfiable. In consequence, it would be possible, with additional
engineering effort, to use such models to report counter-examples in Rodin.

We believe that the approach presented in this paper could also be applied
successfully for other set-based formalisms such as: the B method, TLA+, VDM
and Z.

Cooperation of deduction tools is very error-prone, not only because it relies
on the correctness of many large and complex tools, but also because of the
translations. Certification of proofs in a centralized trusted proof manager would
be the answer to this problem. Preliminary works in this direction exist [15].

Acknowledgements: This paper is an abbreviated version of [12].
References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

10.

11.

12.

13.

14.

15.

16.

. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge

University Press, 2010.

M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In First Int’l
Conference on Certified Programs and Proofs, CPP 2011, volume 7086 of Lecture
Notes in Computer Science, pages 135—150. Springer, 2011.

C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825-885. IOS Press, Feb. 2009.

C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard Version 2.0, 2010.
T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: An Open,
Trustable and Efficient SMT-Solver. In Proc. Conference on Automated Deduc-
tion (CADE), volume 5663 of Lecture Notes in Computer Science, pages 151-156.
Springer, 2009.

J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna. RODIN
(Rigorous open Development Environment for Complex Systems). In Fifth Eu-
ropean Dependable Computing Conference: EDCC-5 supplementary volume, pages
23-26, 2005.

J.-F. Couchot, D. Déharbe, A. Giorgetti, and S. Ranise. Scalable Automated Prov-
ing and Debugging of Set-Based Specifications. Journal of the Brazilian Computer
Society, 9:17-36, 2003.

L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan and J. Rehof, editors, Tools and Algorithms for Construction and Analysis
of Systems (TACAS), volume 4963 of Lecture Notes in Computer Science, pages
337-340. Springer, 2008.

D. Déharbe. Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In M. Frappier, G. Uwe, K. Sarfraz, R. Laleau, and S. Reeves, editors,
Proceedings 2nd Int’l Conf. Abstract State Machines, Alloy, B and Z, ABZ 2010,
volume 5977 of Lecture Notes in Computer Science, pages 217-230. Springer, 2010.
D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In
J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel, S. Reeves, and
E. Riccobene, editors, Proc 3rd Int. Conf. Abstract State Machines, Alloy, B, VDM,
and Z (ABZ 2012), volume 7316 of Lecture Notes in Computer Science, pages 194—
207. Springer, 2012.

D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. Integrating SMT solvers in
Rodin. Science of Computer Programming, 2014. Available online.

M. Konrad and L. Voisin. Translation from Set-Theory to Predicate Calculus.
Technical report, ETH Zurich, 2011.

D. Kroning, P. Riimmer, and G. Weissenbacher. A Proposal for a Theory of Finite
Sets, Lists, and Maps for the SMT-LIB Standard. In Informal proceedings, 7th
Int’l Workshop on Satisfiability Modulo Theories (SMT) at CADE 22, 2009.

M. Schmalz. The logic of Event-B, 2011. Technical report 698, ETH Ziirich,
Information Security.

The Eclipse Foundation. Eclipse SDK, 2009.

