
Rapid Prototyping and Animation of Z
Specifications Using {log}
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Abstract. Prolog has been proposed as the programming language on
which animation and prototyping of Z specifications should be based.
However, we believe there is still room for improvements. In this paper,
we want to revisit this issue in the light of a powerful, set-oriented con-
straint programming language like {log} (pronounced ’setlog’). In partic-
ular, we pay attention to three points that we think are crucial: finding
solutions to complex state predicates; defining formal criteria for guid-
ing an evaluation process based on prototypes; and automatically adding
graphical user interfaces to prototypes generated from Z specifications.
Three examples of information systems prototypes are available online.

1 Running Example

Assume you are eliciting the user requirements for an ERP system. In a first
meeting, your customer asks the following:

(R1) Keep a record of client accounts where the company registers all the credits
and debits of its clients.

(R2) Get a listing of all the accounts whose balance is in a given range.

Given that you have experience in requirement engineering, you know that
probably your customer has told you (R1) and (R2) without giving them too
much thought. You would like to be sure that these are the real, final require-
ments before engaging your team in programming unstable, unvalidated require-
ments. Following the software engineering literature you know that it would be
of great help if you could show your customer a prototype of these requirements.

Now, suppose you know of a tool that automatically generates functional
prototypes of some kind of Z specifications, provided they are annotated with
user interface directives. Further, let us say that in your team there is an engineer
who is knowledgeable in the Z notation. Would it be cost-effective to write a Z
specification of (R1) and (R2) and use that tool to generate a prototype so your
customer can validate them? In this way, your programmers will implement
validated requirements; moreover, they will do it from a formal specification. All
this would amount to a much better product with less iterations to improve its



quality. Even more, assume that this prototyping tool records all the interactions
of users. Then, later, these interactions can be used as functional test cases. So
the tool would also help you during the testing process.

After considering all these gains, you decide to ask your team to write the
Z specification shown in Figure 1 and the GUI specification shown in 3 which,
when fed into the prototyping tool, become the Prolog+{log}+XPCE program
[25, 11, 36] partially shown in Figure 4. When this program is executed the user
can play with an application presenting an acceptable GUI like the one shown
in Figure 2—download this and two more examples from [6].

[UID ,NAME ]
ERP ==

[clients : UID 7→ NAME ; accounts : UID 7→ Z | dom clients = dom accounts]
InitERP == [ERP | clients = ∅ ∧ accounts = ∅]

NewClientOk
∆ERP ; u? : UID ; n? : NAME

u? /∈ dom clients
clients ′ = clients ∪ {u? 7→ n?}
accounts ′ = accounts ∪ {u? 7→ 0}

TransactionOk
∆ERP ; n? : UID ; m? : Z

n? ∈ dom accounts ∧ m? 6= 0
accounts ′ = accounts ⊕ {n? 7→ accounts n? + m?}
clients ′ = clients

ClientAlreadyExists == [ΞERP ; u? : UID | u? ∈ dom clients]
NewClient == NewClientOk ∨ ClientAlreadyExists
AccountNotExists == [ΞERP ; n? : UID | n? /∈ dom accounts]
NullAmount == [ΞERP ; m? : Z | m? = 0]
Transaction == TransactionOk ∨ AccountNotExists ∨ NullAmount
AccountsInRangeOk ==

[ΞERP ; a?, b? : Z; r ! : PUID | a? ≤ b? ∧ r ! = dom(accounts B (a? . . b?))]
NotARange == [ΞERP ; a?, b? : Z; r ! : RET | a? > b?]
AccountsInRange == AccountsInRangeOk ∨ NotARange

Fig. 1: Excerpt of the Z specification of (R1) and (R2)

Z and {log} will be introduced in sections 2 and 3, respectively, and how
prototypes would be automatically generated in Sect. 4. Now we want to show



Fig. 2: Screenshot of the prototype

what users and software engineers can do with these prototypes. Note that the
GUI is divided into two panels. The one on the left, State transitions, dis-
plays all the state transitions executed while the application is used. It displays
the initial state by giving the value for each state variable, the name of the Z
operation (transition) executed and the resulting new state—input and output
variables are not displayed to keep the example manageable but they can be
trivially added. The panel on the right, named ERP in this case, is the actual
prototype which presents a menu bar. This menu bar contains as many pull-down
menus as indicated in the GUI specification plus the Tools menu automatically
added to all prototypes. Although not shown in Figure 2, the Accounts menu
contains three options (New client, Inform transaction and Accounts
in range) as indicated by the GUI specification given in Figure 3. The Tools
menu contains only one option called Set state. When users click on a given
menu option a dialog box opens, as, for instance, the one shown in the figure
which corresponds to the New client option. Again, dialog boxes display GUI
widgets according to the GUI specification, plus default Cancel and Enter but-
tons. Once a dialog box is filled in and the Enter button is pressed, the dialog
calls the corresponding Z operation which in turn updates the state and prints
some output. Output can be printed in the same dialog-box or in the application
main window, as can be seen in the figure. In summary, the prototype executes
all the specified operations through a reasonably real GUI.

Allowing end-users to play with the prototype as with a final application
is important but they should do it trying to see if you (the requirement engi-
neer) have correctly understood what they asked you for. For instance, executing
AccountsInRange from the initial state of the system (Figure 1) says little about
whether requirement (R2) has been correctly understood or not, because the
answer will be the empty set regardless of the values of a? and b?. Therefore, it
would be better if the operation is executed when the state of the system contains
some client accounts with different balances. One possible way of doing this is
entering some clients and transactions by using the different menus and options.



Clearly, this is annoying, time consuming and error prone. Alternatively, you can
think of a state predicate such that every possible solution would enable satisfac-
tory executions of the operation. For example, solutions to # ran accounts > 3
are partial functions that contain at least four elements in the range, which
implies at least three elements in the domain. Then, if the state from which
AccountsInRange is executed satisfies that formula, dom(accounts B (a? . . b?))
(see AccountsInRangeOk) can be a set with different numbers of elements de-
pending on the values set for a? and b?.

The Set state option in the Tools menu allows you to enter a Z predicate
depending on the state variables of the system. {log} tries to find a solution
for the goal and, if it succeeds, this solution is bound to the state variables.
In other words, the system transitions to a state verifying that goal. Most of Z
predicates can be translated into {log} goals [7]. Hence, if you call Set state,
enter the {log} representation of # ran accounts > 3, and call AccountsInRange
there will be several accounts with different balances making it possible to set
interesting values for a? and b?, thus generating different listings. This would
allow your end-users to validate requirement (R2) through the prototype by
evaluating whether its answers are correct with respect to their expectations.
Finding solutions to state predicates is further discussed in Sect. 5.

However, why # ran accounts > 3 is the proper condition? Are there other
conditions that should be sought? How can they be discovered? Model-based
testing (MBT) methods face a similar problem. In Sect. 6 we propose to apply
the Test Template Framework (TTF) [32], a MBT method tailored to the Z
notation, to discover the key conditions to validate user requirements.

Positive side effects. Say that your customer approves the prototype. This im-
plies that all the transitions recorded by the prototype (cf. panel State transi-
tions) are correct. You can use them to conduct system and acceptance testing
because they represent the runs that your customer has validated. If the final
system behaves the same with respect to these executions, your customer should
be satisfied with the product. Note that these executions can be replayed in
the final product because they are actual values for the important variables—
however, some semi-automatic reification or refinement will be needed, see [5]
for an approach to this problem. Furthermore, if the TTF is applied to guide
the validation process, these runs can be used for unit testing too. Even more:
you have a formal specification of the requirements ready to be handed to the
programming team. All this should account for a much better product at the
price of writing a Z specification.

Warning. The prototype generation tool that we described in this introduction
is not fully implemented yet, but we think it is feasible because: translations
from Z to Prolog have already been proposed; {log} can solve many complex
set predicates [7] making it possible to implement the Set state feature; and
the TTF has been implemented by the Fastest tool which has been applied to
several Z specifications to discover complex testing specifications [4]. We believe
that the problem is putting all these techniques and tools to work together.



2 Brief Introduction to the Z notation

Z is a formal specification language based on first-order logic and set theory [30].
It can be used to specify software systems in many different ways. However, in
this paper we will consider that specifications take the form of state machines,
which is how the notation is widely used. This way of writing specifications is
based on a set of interpretations and conventions. Then, all the results presented
in this paper hold if specifiers follow them. We will introduce some details of Z
by describing the meaning of the specification presented in Figure 1, which for-
malizes part of (R1) and (R2). UID and NAME are two uninterpreted sorts
(called basic or given types in Z). ERP is a so-called schema declaring two vari-
ables, clients and accounts. clients is a partial function from UID into NAMES .
ERP also restricts the possible values of clients and accounts to those that have
equal domains. clients represents the set of agents who are currently clients of
the company; accounts holds the current balance of each client’s account. In this
way, ERP is the state space of the state machine. In Z, ordered pairs are written
as a 7→ b, and partial functions are sets of ordered pairs. Then, InitERP simply
states that in the initial state both partial functions are empty.

NewClientOk is an operation schema because it defines a state transition.
This can be noted by the ∆ERP expression. ∆ERP declares clients, accounts,
clients ′ and accounts ′ where clients ′ and accounts ′ represent the value of clients
and accounts in the after-state. In Z state transitions can also consume inputs
and produce outputs. Inputs variables are decorated with ‘?’ while output ones
with ‘!’. The predicate part of schema NewClientOk states the pre-conditions
and post-conditions that define the operation. In this case, the agent for whom
the account is being opened must be new to the company; this is formalized
by asking that his/her ID must not belong to the domain of clients. If this is
the case, his/her ID and name are added to the client “database”; and a new
account whose balance is zero is added. Note how set expressions are used even
for partial functions and how the new state is defined. For instance, accounts ′ =
accounts ∪{u? 7→ 0} states that the value of accounts in the after-state must be
equal to its value in the before-state plus the ordered pair u? 7→ 0.

Schema ClientAlreadyExists states that the system must remain the same
when the client already exists. This is formalized by the expression ΞERP which
implicitly cojoins clients ′ = clients ∧ balances ′ = balances to the schema. The
final operation, NewClient , is specified as the disjunction of the two previous
schemas. NewClient is also a schema defined by a schema expression.

Since the specification of the other operations follows a similar structure, we
will only comment about the new expressions. ⊕ is a relational operator defined
as f ⊕ g = (dom g −C f ) ∪ g where −C is the domain anti-restriction operator.
That is, A −C f = {p : f | p.1 /∈ A}. In turn, C, used in AccountsInRangeOk ,
is the domain restriction operator defined as A C f = {p : f | p.1 ∈ A}. These
operators are part of the Z mathematical toolkit (ZMT) [26], which is a rich and
expressive collection of mathematical operators supported by Z. In particular,
we would like to emphasize that the notion of set is essential in Z because it is
used to define binary relations, partial and total functions, sequences and bags.



Therefore, it is tantamount to the success of an animation or rapid prototyping
tool for Z specifications to be based on a powerful, efficient set constraint solver.

3 Brief Introduction to {log}

{log} [9, 10, 25] is a constraint logic programming (CLP) language that extends
Prolog with general forms of sets and basic set-theoretic operations in the form of
primitive constraints. Sets are primarily designated by set terms, that is, terms
of one of the forms: {}, whose interpretation is the empty set, or {t1, . . . , tn | s},
where s is a set term, whose interpretation is the set {t1} ∪ {t2} ∪ · · · ∪ {tn} ∪ s.
The kind of sets that can be constructed in {log} are the so-called hereditarily
finite sets, that is finitely nested sets that are finite at each level of nesting. Note
that similarly to Prolog’s lists, a set {t1, . . . , tn | s} can be partially specified,
in that either some of its elements t1, . . . , tn or the remaining part s can contain
unbound variables (hence “unknowns”). Sets can be also denoted intentionally
by set formers of the form {X : exists([Y1, . . . ,Yn],G)}, where G is a {log}-goal
(see below) and X,Y1, . . . ,Yn are variables occurring in G. Finally, sets can be
denoted by interval terms, that is terms of the form int(a, b), where a and b are
integer terms, whose interpretation is the integer interval [a, b].

Basic set-theoretic operations are provided in {log} as predefined predicates,
and dealt with as constraints. For example, the predicates in and nin are used
to represent membership and not membership, respectively; the predicate subset
represents set inclusion (i.e., subset(r, s) holds if and only if r ⊆ s holds); while
inters represents the intersection relation (i.e., inters(r, s, t) holds if and only if
t = r∩s). Basically, a {log}-constraint is a conjunction of such atomic predicates.
For example,

1 in R & 1 nin S & inters(R,S,T) & T = {X}

where R, S, T and X are variables, is an admissible {log}-constraint, whose
interpretation states that set T is the intersection between sets R and S, R must
contain 1 and S must not, and T must be a singleton set.

The original collection of set-based primitive constraints has been extended
in [22] to include simple integer arithmetic constraints over Finite Domains as
provided by CLP(FD) systems (cf. e.g. [24]).

The {log}-interpreter includes a constraint solver that is able to check sat-
isfiability of {log}-constraints with respect to the underlying set and integer
arithmetic theories. Moreover, when a constraint c holds, the constraint solver
is able to compute, one after the other, all its solutions (i.e., all viable assign-
ments of values to variables occurring in c). In particular, automatic labeling is
called at the end of the computation to force the assignment of values from their
domains to all integer variables occurring in the constraint, leading to a chrono-
logical backtracking search of the solution space. Possibly, remaining irreducible
constraints are also returned as part of the computed answer.

Clauses, goals, and programs in {log} are defined as usual in CLP. In particu-
lar, a {log}-goal is a formula of the form B1 & B2 & · · · & Bk, where B1, . . . ,Bk



are either user-defined atomic predicates, or atomic {log}-constraints, or dis-
junctions of either user-defined or predefined predicates, or Restricted Universal
Quantifiers (RUQs). Disjunctions have the form G1 or G2, where G1 and G2

are {log}-goals, and are dealt with through non-determinism: if G1 fails then
the computation backtracks, and G2 is considered instead. RUQs are atoms
of the form forall(X in s, exists([Y1, . . . ,Yn],G)), where s denotes a set and G
is a {log}-goal containing X,Y1, . . . ,Yn. The logical meaning of this atom is
∀X (X ∈ s ⇒ ∃Y1, . . . ,Yn : G), that is G represents a property that all el-
ements of s are required to satisfy. When s has a known value, the RUQ can
be used to iterate over s, whereas, when s is unbound, the RUQ allows s to be
non-deterministically bound to each set satisfying the property G .

The following is an example of a {log} program:

is rel(R) :- forall(P in R, exists([X,Y],P = [X,Y])).
dom({}, {}).
dom({[X,Y]/Rel},Dom) :- dom(Rel,D) & Dom = {X/D} & X nin D.

This program defines two predicates, is rel and dom. is rel(R) is true if R is a
binary relation, that is a set of pairs of the form [X,Y]. dom(R,D) is true if D is
the domain of the relation R. The following is a goal for the above program:

R = {[1, 5], [2, 7]} & is rel(R) & dom(R,D)

and the computed solution for D is D = {1, 2}. It is important to note that
is rel(R) can be used both to test and to compute R; similarly, dom(R,D) can
be used both to compute D from R, and to compute R from D, or simply to test
whether the relation represented by dom holds or not.

As can be seen, is rel and dom are {log} implementations of the corresponding
concepts in the ZMT. They are part of a {log} library implementing almost all
the ZMT [7]. Some elements of the ZMT are not supported yet because they are
beyond of set theory and, in some cases, would require some extensions to {log}
or a more complex translation. For example, generic and axiomatic definitions
and recursive types are not fully yet supported.
{log} has important advantages compared to other Prolog-based tools that

can deal with sets. With respect to the simpler scheme which constructs set
abstractions on top of an existing Prolog system, typically by using lists (cf. e.g.
[21]), {log} demonstrates its superiority whenever one has to deal with partially
specified sets. For example, even the simple problem of comparing two sets, such
as {a | X } and {b | Y }, may lead to an infinite collection of answers when
sets and set operations are implemented using lists, whereas in {log} it is dealt
as a set unification problem [12] which admits the single more general solution
X = {b | S} and Y = {a | S} where S is a new variable. Similar considerations
hold also when the negative counterparts of the basic set-theoretic operations,
such as ‘not equal’ and ‘not member’, are taken into account. The use of the
list-based implementation of sets, in conjunction with the Negation as Failure
rule provided by most implementations of Prolog, leads to well-known problems
whenever non-ground atoms are involved.



Viewing sets as first-class entities and operations on sets as constraints, as
done in {log}, provides a much more convenient solution. With respect to other
proposals which deal with set constraints, such as [13], the main advantage
of {log} is its generality: sets in {log} can contain elements of any type, can
be nested and partially specified, whereas sets in the so-called set-constraint
languages are restricted to flat sets of known integer elements. Moreover these
proposals usually require a finite domain (i.e. a set of sets) is specified for each
set variable occurring in a constraint, whereas this is not the case for {log}. On
the other hand, the (incomplete) solvers of the set-constraint languages turn out
to be in many cases more efficient than the general solver of {log}.
{log} is fully implemented in Prolog and can be downloaded from [25].

4 Automatic Prototype Generation from Z Specifications

Generating a Prolog prototype from a Z specification involves the automatic
translation from Z into Prolog. There are several proposals [8, 31, 3, 17, 14, 29,
33, 18, 37, 15, 23, 35, 7] that confirm that it is possible to implement such a com-
piler. There are also similar works for the B method [34, 1, 16] which defines a
mathematical library like the ZMT. However, most of these works are aimed
at animating the specification rather than using it as a means to validate user
requirements. Then, they do not pay attention to equip the prototype with an
acceptable user interface. Animation is thought to be a verification activity car-
ried out by software engineers who want to analyze if a specification verifies
some properties; in this sense animation is a complement or an alternative to
proof. Instead, we think that if the resulting (Prolog) program is augmented
with a GUI, animation becomes rapid prototyping and can be used (also) for
functional requirements validation. That is, the prototype can be used by end-
users to validate whether or not requirement engineers have understood what
the system is supposed to do. Sterling et al. [31] aim at a similar target but they
think in a Z-to-Prolog compiler that generates a command-line-like program that
users are supposed to play with. We think that this is impractical. Besides, only
a handful of these works [1, 23, 16] rely on a powerful, set-oriented constraint
language implementing set constraint satisfaction, and even in these cases the
underlying mathematics are not described in detail. B-Motion and Brama [28,
19] are two tools based on the B method which go in the same direction pro-
posed here. B-Motion is based on ProB [20]. Both tools seem to be oriented to
graphically represent software-controlled physical systems rather than informa-
tion systems as the one described in the motivation example and the two other
examples available on-line [6].

Therefore, we propose to define a simple, GUI specification language (GEL)
of which Figure 3 is an example. This language should allow engineers to define
the structure of a GUI and how it connects with the (Prolog) program generated
from the Z specification. This GEL would not need to express the behavior of
the GUI (for instance, specify when part of the GUI should be disabled).



GUI specification for ERP
Pull-down menu Accounts has

Option New client opens Add new client
Option Inform transaction opens Add a credit or debit
Option Accounts in range opens List all accounts in range

end of menu

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dialog-box Add a credit or debit calls Transaction where
n? is read by dom clients
n? is a list labeled as Select ID
m? is a int labeled as Amount

end of dialog box

Dialog-box List all accounts in range calls AccountsInRange where
a? is a int labeled as Min value
b? is a int labeled as Max value
r ! is a text labeled as Accounts ID in range

end of dialog box

end of GUI specification

Fig. 3: GUI specification of the Z specification of Figure 1

Then, after a meeting with the client, requirement engineers write Z and GUI
specifications and use the prototype generation tool to get the first prototype.
In this way, they can go to the next meeting with a prototype over which end-
users can validate the requirements [27]. If users propose changes, the Z and GUI
specifications are changed accordingly and the tool is run again. This allows an
iterative, prototype-based process of requirement elicitation and validation.

The Z specification can be compiled into a Prolog program by a combina-
tion between the proposals by Sterling, Ciancarini and Turnidge [31] and by
Cristiá, Rossi and Frydman [7]. The main contribution here is to use {log} as
the constraint solver instead of the list-based implementation of sets proposed
by Sterling and his colleagues because this enables the possibility of implement-
ing the Set State command discussed in Sect. 5 and the validation method
introduced in Sect. 6. Besides, the tool must take into account also the GUI
specification accompanying the Z specification. Here XPCE, the SWI-Prolog
native GUI library [36], comes handy because it allows a seamless integration of
the functional (Z) and the GUI specifications.

The main rules for compiling GUI specifications are the following (follow
figures 3 and 4 as an aid to understand these rules):

1. The GUI is implemented inside a XPCE frame object.
2. The menu-bar is implemented as a XPCE menu bar object.
3. The GUI specification must contain at least one ‘pull-down menu’ directive.
4. Each ‘pull-down menu’ directive is compiled as a XPCE popup object.
5. Each ‘option’ directive in a ‘pull-down menu’ must open a ‘dialog-box’.
6. Each ‘option’ directive in a ‘pull-down menu’ is compiled to:

menu item(option,message(@prolog, dialogBox))



initERP :-
saveState({}, {}), nb setval(clients, {}), nb setval(accounts, {}),mainMenu.

mainMenu :-
Builds a menu bar according to the GUI specification. Each option
of the pull-down menus calls a predicate like readAccountsInRange below

readAccountsInRange :-
new(D, dialog(’List all accounts in range’)),
send list(D, append,

[new(M, int item(min value)), new(N, int item(max value)),
text(’Accounts ID in range’), new(B, browser),
button(enter,message(@prolog, accountsInRange,B,

M?selection,N?selection))]),
send(D, open).

accountsInRange(B,M,N) :- accountsInRangeOk(B,M,N); notARange(B,M,N).

accountsInRangeOk(B,M,N) :-
b getval(clients,C), b getval(accounts,A),
setlog(M ein int(0, 10000) &N ein int(0, 10000) &M =< N&

Y = int(M,N) & rres(Y,A,Y1) & dom(Y1,Y2) & set to list(Y2, L)),
writeOutput(B, L), saveNewState(C,A).

Fig. 4: Code excerpt of the prototype of the Z specification shown in Figure 1

where dialogBox is a Prolog predicate implementing the dialog-box that the
option must open.

7. Each dialog-box is implemented as a XPCE dialog object.
8. Each dialog-box must call an existing Z operation.
9. Each dialog-box must indicate what kind of widget must be used for each and

every input and output variable declared in the corresponding Z operation.
10. text is implemented as a XPCE text item object for inputs, and as a browser

for outputs; int as int item; list as list browser; etc.
11. A ‘is read by’ directive in a ‘dialog-box’ directive simply states that the input

variable is read by means of another expression. The selection made through
the expression is passed as the value for the input variable.

12. When the enter button in a dialog-box is pressed the following is executed:

button(enter,message(@prolog,Operation, Input))

where Operation is a Prolog predicate implementing the corresponding Z
operation (this code was generated when the Z specification was compiled)
and Input are the input variables waited by the Z operation where each actual
value corresponds to one of the values read by the widgets of the dialog-box.

Two more examples of this translation can be downloaded from [6]. They
include the Z and GUI specifications and the Prolog+{log}+XPCE program.



5 Solving State Predicates for Requirement Validation

In this section we discuss the Set state feature presented in the introduction.
The inclusion of this feature is based on the following observation: validating
some functional requirements involves taking the prototype to a state such that
state variables satisfy a (complex) predicate. In turn, this can be achieved in
three ways: a) use the prototype’s GUI to put itself in the desired state; b) write
a simple Prolog predicate where each state variable is bound to the desired value
and then execute the prototype from this state; and c) write the state predicate,
give it to a constraint solver, and use its answer as the prototype’s new state.

The first option is annoying, time consuming and error prone; this is the
one discussed in [31]. The second one, is error prone because the values may be
wrong. It can be improved by: writing the state predicate as in c), proposing
a solution to it as in b), and asking the constraint solver whether this solution
indeed satisfies the predicate. If it answers “no”, try another value. This may take
some time but it is safe. However, the best option is c) because the constraint
solver does all the work—except proposing the state predicate, see Sect. 6.

The key condition for c) to be feasible is to have a constraint solver capable of
solving (complex) Z predicates. Since Z predicates are first-order predicates over
the set theory, only a constraint solver for such set theory can deliver the desired
results. {log} may be such a constraint solver because, according to the results
we have obtained when we used it as a test case generator for Fastest [7], it is able
to solve many complex Z predicates. In effect, when {log} is used as Fastest’s
test case generator it needs to find solutions to complex Z predicates describing
equally complex test conditions. However, not all possible Z predicates can be
solved by {log} in its current state, since many Z facilities are implemented
as user-defined predicates and the {log} interpreter can not guarantee efficient
processing or even termination for all the considered formulas.

Therefore, the Set state menu option of the prototypes generated by our
method would wait for either a Z predicate or a {log} goal, translate it into {log}
in the first case, call it and use its answer to set the new state of the prototype.
The following considerations must be taken into account:

1. If a Z predicate is entered it would be automatically translated into a {log}
goal [7]. However, there are cases in which an automatic translation may not
yield the best {log} code in the sense of {log} being able to find a solution
for it in a reasonable time. An alternative could be to let users to edit the
resulting {log} goal to help the tool to find a solution.

2. Typing information about the state variables must be entered along the goal;
this has been discussed in [7].

3. Z basic types (i.e. UID and NAME in Figure 1) pose a problem because
their elements have no structure and so {log} generates variables instead of
constants. This can be solved by post-processing {log}’s answer.

4. If some {log} goal entered by the user is too complex to be solved, (s)he can
write special-purpose {log} predicates to help the tool to find a solution.



For example, # ran accounts > 3, i.e. the state predicate discussed in the
introduction, can be translated as follows:

pfunFromRan(D,R,Accounts) & (1)

solve(size(R,SR) & SR > 3) & (2)

subset(R, int(−10000, 10000) & is pfun(Clients) & (3)

dom(Clients,D). (4)

where: (1) builds Accounts from its range, R, and with domain included in D
(note that the solution must be a value for Accounts and not only for its range
as might be suggested by the original Z predicate); (2) sets the size of R to
something greater than 3; (3) gives type information of R and Clients; and (4) is
the invariant. {log} immediately returns the following:

Accounts = {[g45,−10000], [g30,−9999], [g15,−9998], [g00,−9997]}
Clients = {[g45, g630], [g30, g573], [g15, g516], [g00, g459]}

6 Rigorous Requirement Validation Based on Prototypes

In this section we discuss how scenarios for requirement validation can be au-
tomatically generated from the Z specification. These scenarios are a guide for
users so they can chose which are worth to be explored and which are not. Each
of these scenarios will be given by a Z predicate in terms of the state and input
variables of a given Z operation. Then, each scenario will contribute to validate
the requirements formalized by the corresponding Z operation. In order to per-
form the validation, the software engineer must enter each of them in the Set
state function discussed in Sect. 5 and then execute the implementation of the
corresponding Z operation. End-users must observe the output generated by the
prototype and classify it as correct or incorrect.

Our proposal for a rigorous requirement validation process based on pro-
totypes generated from Z specifications (of the requirements themselves) is to
apply the Test Template Framework (TTF) [32, 4]. The TTF is a model-based
testing (MBT) method tailored to the Z notation. It proceeds by dividing the
input space of each Z operation (of a given specification) into so-called test con-
ditions. In this context we will use, instead, the term validation condition. Each
validation condition is given by a Z predicate on the input and state variables
of the corresponding Z operation. Each of them describes the conditions for a
test case. Precisely, we propose to use these conditions for requirement valida-
tion (and, obviously, to later test the implementation). In this sense, validating
a requirement consists of:

1. Put the prototype in the state described by the validation condition;
2. Execute the implementation of the Z operation with the input values given

by the test condition; and
3. Observe the prototype’s behavior to determine if it satisfies end-users.



Fastest is a MBT tool that provides tool support for the TTF [4]. It can au-
tomatically generate validation conditions by applying so-called testing tactics.
A testing tactic is a systematic and general rule to divide the input space of Z
operations. The same testing tactics can be applied for requirement validation.
For example, a classical testing tactic is Disjunctive Normal Form (DNF), which
rewrites the Z operation in DNF, takes the precondition of each disjunct, and
divides its input space with these predicates.

For example, the input space of Transaction (Figure 1) is:

TransactionIS ==
[clients : UID 7→ NAME ; accounts : UID 7→ Z; n? : UID ; m? : Z]

So, when DNF is applied to it the following validation conditions are generated:

TransactionDNF
1 == [TransactionIS | n? ∈ dom accounts ∧ m? 6= 0]

TransactionDNF
2 == [TransactionIS | n? /∈ dom accounts]

TransactionDNF
3 == [TransactionIS | m? = 0]

Therefore, if the prototype is used in each of these conditions, end-users will be
validating whether requirement engineers correctly understood (at least part of)
what it means to record a transaction of a client. For instance, they will try to
record a proper transaction (TransactionDNF

1 ), a transaction of a nonexistent
client (TransactionDNF

2 ), etc. As suggested by the TTF, more testing tactics
can be applied to further divide the validation conditions obtained so far, thus,
getting more revealing ones. Therefore, if engineers and users find that some
validation condition should be verified more deeply they can apply more testing
tactics to this validation condition to further divide it in more complex cases.

In summary, if Fastest is used to generate the validation conditions, and then
each of them is successively entered in Set state (cf. Sect. 5), software engineers
will have a tool that will assist them in generating and validating a prototype
(besides making early progress with testing). {log} has already proved to solve
many of these conditions [7].

7 Conclusions

We have shown that it would be possible to develop a prototype generator for
Z specifications based on the {log} constraint solver. These prototypes could
include rich GUIs that would make end-users to be able to use them for re-
quirement validation. The TTF could assist software engineers in conducting
a systematic requirement validation process, and {log} could help them in au-
tomating some fundamental activities. This technique would also help during
the testing stage. The proposal would have a number of advantages that would
pay-off the effort of writing a Z specification.

However, many issues need to be discussed and some problems need to be
solved. For example, how prototypes would interface with external systems? How
this can be described in Z? Should it be described in Z? Should it be prototyped?



What if a validation condition asks for a state that cannot be reached by a
sequence of the operations available in the specification? Should this condition
be validated or not? What is a precise characterization of the class of systems
within the scope of this proposal? Finding an answer to all these questions,
however, seems feasible and is left for future work.
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