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This talk illustrates proof-verification technology based on set theory, also
reporting on experiments carried out with ÆtnaNova, aka Ref (see [6, 4]).

The said verifier processes script files consisting of definitions, theorem state-
ments and proofs of the theorems. Its underlying deductive system—mainly first-
order, but with an important second-order construct enabling one to package def-
initions and theorems into reusable proofware components—is a variant of the
Zermelo-Fraenkel set theory, ZFC, with axioms of regularity and global choice.
This is apparent from the very syntax of the language, borrowing from the set-
theoretic tradition many constructs, e.g. abstraction terms. Much of Ref’s nat-
uralness, comprehensiveness, and readability, stems from this foundation; much
of its effectiveness, from the fifteen or so built-in mechanisms, tailored on ZFC,
which constitute its inferential armory. Rather peculiar aspects of Ref, in com-
parison to other alike proof-assistants (cf., e.g., [2, 1]), are that Ref relies only
marginally on predicate calculus and that types play no prominent role, in it, as
a foundation.

The selection of examples, mainly referred to graphs, to be discusses in
this talk, reflects today’s tendency [5] to bring Ref’s use closer to algorithm-
correctness verification. To achieve relatively short, formally checked, proofs of
properties enjoyed by claw-free graphs, we took advantage of novel results [3]
about representing their (undirected) edges via membership.
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